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DISCLAIMER

This report documents version 1.21 of SWMS_2D, a computer program for simulating
two-dimensional water flow and solute transport in variably saturated media. SWMS_2D
is a public domain code, and as such may be used and copied freely. The code has been
verified against a large number of test cases. However, no warranty is given that the
program is completely error-free. If you do encounter problems with the code, find errors,

or have suggestions for improvement, please contact one of the authors at

U. S. Salinity Laboratory
USDA, ARS

4500 Glenwood Drive
Riverside, CA 92501

Tel. 909-369-4846
Fax. 909-369-4818
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ABSTRACT

Simdnek, J., T. Vogel and M. Th. van Genuchten. 1994. The SWMS 2D Code for
Simulating Water Flow and Solute Transport in Two-Dimensional Variably Saturated
Media, Version 1.21. Research Report No. 132, U.S. Salinity Laboratory, USDA, ARS,

Riverside, California.

This report documents version 1.21 of SWMS_2D, a computer program for simulating
water and solute movement in two-dimensional variably saturated media. The program
numerically solves the Richards’ equation for saturated-unsaturated water flow and the
convection-dispersion equation for solute transport. The flow equation incorporates a sink
term to account for water uptake by plant roots. The transport equation includes provisions
for linear equilibrium adsorption, zero-order production, and first-order degradation. The
program may be used to analyze water and solute movement in unsaturated, partially
saturated, or fully saturated porous media. SWMS_2D can handle flow regions delineated
by irregular boundaries. The flow region itself may be composed of nonuniform soils having
an arbitrary degree of local anisotropy. Flow and transport can occur in the vertical plane,
the horizontal plane, or in a three-dimensional region exhibiting radial symmetry about the
vertical axis. The water flow part of the model can deal with prescribed head and flux
boundaries, as well as boundaries controlled by atmospheric conditions. New features of
the present version 1.21 include the implementation of free drainage boundary conditions,
and a simplified representation of nodal drains using results of electric analog experiments.
This version has also more flexibility in selecting certain boundary conditions for solute
transport.

The governing flow and transport equations are solved numerically using Galerkin-
type linear finite element schemes. Depending upon the size of the problem, the matrix
equations resulting from discretization of the governing equations are solved using either
Gaussian elimination for banded matrices, or a conjugate gradient method for symmetric
matrices and the ORTHOMIN method for asymmetric matrices. The program is written
in ANSI standard FORTRAN 77. Computer memory is a function of the problem
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definition. This report serves as both a user manual and reference document. Detailed
instructions are given for data input preparation. Example input and selected output files

are also provided, as is a listing of the source code.
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1. INTRODUCTION

The importance of the unsaturated zone as an integral part of the hydrological cycle
has long been recognized. The zone plays an inextricable role in many aspects of hydrology,
including infiltration, soil moisture storage, evaporation, plant water uptake, groundwater
recharge, runoff and erosion. Initial studies of the unsaturated (vadose) zone focused
primarily on water supply studies, inspired in part by attempts to optimally manage the root
zone of agricultural soils for maximum crop production. Interest in the unsaturated zone
has dramatically increased in recent years because of growing concern that the quality of the
subsurface environment is being adversely affected by agricultural, industrial and municipal
activities. Federal, state and local action and planning agencies, as well as the public at
large, are now scrutinizing the intentional or accidental release of surface-applied and soil-
incorporated chemicals into the environment. Fertilizers and pesticides applied to
agricultural lands inevitably move below the soil root zone and may contaminate underlying
groundwater reservoirs. Chemicals migrating from municipal and industrial disposal sites
also represent environmental hazards. The same is true for radionuclides emanating from
energy waste disposal facilities.

The past several decades has seen considerable progress in the conceptual
understanding and mathematical description of water flow and solute transport processes
in the unsaturated zone. A variety of analytical and numerical models are now available
to predict water and/or solute transfer processes between the soil surface and the
groundwater table. The most popular models remain the Richards’ equation for variably
saturated flow, and the Fickian-based convection-dispersion equation for solute transport.
Deterministic solutions of these classical equations have been used, and likely will continue
to be used in the near future, for predicting water and solute movement in the vadose zone,
and for analyzing specific laboratory or field experiments involving unsaturated water flow
and/or solute transport. These models are also helpful tools for extrapolating information
from a limited number of field experiments to different soil, crop and climatic conditions,

as well as to different tillage and water management schemes.



The purpose of this report is to document version 1.21 of the SWMS_2D computer
program simulating water and solute movement in two-dimensional variably saturated
media. The program numerically solves the Richards’ equation for saturated-unsaturated
water flow and the convection-dispersion equation for solute transport. The flow equation
incorporates a sink term to account for water uptake by plant roots. The solute transport
equation includes provisions for linear equilibrium adsorption, zero-order production, and
first-order degradation. The program may be used to analyze water and solute movement
in unsaturated, partially saturated, or fully saturated porous media. SWMS_2D can handle
flow domains delineated by irregular boundaries. The flow region itself may be composed
of nonuniform soils having an arbitrary degree of local anisotropy. Flow and transport can
occur in the vertical plane, the horizontal plane, or in a three-dimensional region exhibiting
radial symmetry about a vertical axis. The water flow part of the model considers
prescribed head and flux boundaries, as well as boundaries controlled by atmospheric
conditions. New features of the current version 1.21, as opposed to the original code
[Simuinek et al., 1992], include the implementation of free drainage boundary conditions, and
a simplified representation of nodal drains using results of electric analog experiments.
First- or third-type boundary conditions can now be prescribed in the solute transport part
of the model. Version 1.21 has also more flexibility in selecting boundary conditions for
solute transport then previous version.

The governing flow and transport equations are solved numerically using Galerkin-
type linear finite element schemes. Depending upon the size of the problem, the matrix
equations resulting from discretization of the governing equations are solved using either
Gaussian elimination for banded matrices, or the conjugate gradient method for symmetric
matrices and the ORTHOMIN method for asymmetric matrices [Mendoza et al., 1991]. The
program is an extension of the variably saturated flow code of Vogel [1987], which in turn
was based in part on the early numerical work of Neuman and colleagues [Neuman, 1972,
1973, Neuman et al., 1974; Neuman, 1975; Davis and Neuman, 1983]. The SWMS 2D code
is written in ANSI standard FORTRAN 77, and hence can be compiled, linked and run on

any standard micro-, mini-, or mainframe system, as well as on personal computers. The



source code was developed and tested on a PC 486 using the Microsoft Fortran
PowerStation.

This report serves as both a user manual and reference document. Detailed
instructions are given for data input preparation. Example input and selected output files
are also provided, as is a listing of the source code. Two 3% or 5% inch floppy diskettes
containing the source code and the input and output files of four examples discussed in this

report are available upon request from the authors.






2. VARIABLY SATURATED WATER FLOW

2.1. Governing Flow Equation

Consider two-dimensional isothermal Darcian flow of water in a variably saturated
rigid porous medium and assume that the air phase plays an insignificant role in the liquid
flow process. The governing flow equation for these conditions is given by the following
modified form of the Richards’ equation:

L __[K(K"' oh K*)]-S 2.1)
ox, ox.

ot g

where 8 is the volumetric water content [LL?], & is the pressure head [L], § is a sink term
[T, x; (i=1,2) are the spatial coordinates [L] , ¢ is time [T], K are components of a
dimensionless anisotropy tensor K*, and X is the unsaturated hydraulic conductivity function

[LT?] given by

K(h,x,2) =K (x,2) K (h,x,2) (22)

where K. is the relative hydraulic conductivity and K the saturated hydraulic conductivity
[LT?). The anisotropy tensor K;* in (2.1) is used to account for an anisotropic medium.
The diagonal entries of K;* equal one and the off-diagonal entries zero for an isotropic
medium. If (2.1) is applied to planar flow in a vertical cross-section, x, =x is the horizontal
coordinate and x,=z is the vertical coordinate, the latter taken to be positive upward.
Einstein’s summation convention is used in (2.1) and throughout this report. Hence, when
an index appears twice in an algebraic term, this particular term must be summed over all

possible values of the index.
2.2. Root Water Uptake

The sink term, S, in (2.1) represents the volume of water removed per unit time from

a unit volume of soil due to plant water uptake. Feddes et al. [1978] defined S as
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S(h) =a(h)S, 2.3)

where the water stress response function a(h) is a prescribed dimensionless function (Fig.
2.1) of the soil water pressure head (0<a<1), and S, is the potential water uptake rate [T
']. Figure 2.1. gives a schematic plot of the stress response function as used by Feddes et al.
[1978]. Notice that water uptake is assumed to be zero close to saturation (i.e., wetter than
some arbitrary "anaerobiosis point", ;). For h<h, (the wilting point pressure head), water
uptake is also assumed to be zero. Water uptake is considered optimal between pressure
heads 4, and h,, whereas for pressure head between 4, and A, (or A, and h,), water uptake
decreases (or increases) linearly with 4. S, is equal to the water uptake rate during periods
of no water stress when a(h)=1.

When the potential water uptake rate is equally distributed over a two-dimensional

rectangular root domain, S, becomes
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Pressure Head, h

Fig. 2.1. Schematic of the plant water stress response function, a(h),
as used by Feddes et al. [1978].
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Fig. 2.2. Schematic of the potential water uptake distribution function, b(x,z),
in the soil root zone.

S=——LT (2.4)

where T, is the potential transpiration rate [LT"], L, is the depth [L] of the root zone, L,
is the width [L] of the root zone, and L, is the width [L] of the soil surface associated with
the transpiration process. Notice that S, reduces to T,/L, when L,=L,.

Equation (2.4) may be generalized by introducing a non-uniform distribution of the

potential water uptake rate over a root zone of arbitrary shape [Vogel, 1987]:
S,=b(x,z)L,T, (2.5)

where b(x,z) is the normalized water uptake distribution [L?]. This function describes the
spatial variation of the potential extraction term, §,, over the root zone (Fig. 2.2), and is

obtained from b’(x,z) as follows



b’(x,2)

b(x,2) =
Lb '(x,z)da

(2.6)

where 1 is the region occupied by the root zone, and b’ (x2) is an arbitrarily prescribed
distribution function. Normalizing the uptake distribution ensures that b(x,2z) integrates to

unity over the flow domain, i.e.,

Lb(x,z) da=1 2.7

From (2.5) and (2.7) it follows that S, is related to 7, by the expression

- [$,d0=T, 28)
UL

The actual water uptake distribution is obtained by substituting (2.5) into (2.3):

S(h,x,z) =a(h,x,z) b(x,z) L, T, (2.9)

whereas the actual transpiration rate, T, is obtained by integrating (2.9) as follows

a

1
T = T I Sda=T, l a(h,x,z) b(x,z)dn (2.10)
R R

[

2.3. The Unsaturated Soil Hydraulic Properties

The unsaturated soil hydraulic properties in the SWMS_2D code are described by
a set of closed-form equations resembling those of van Genuchten [1980] who used the
statistical pore-size distribution model of Mualem [1976] to obtain a predictive equation for
the unsaturated hydraulic conductivity function. The original van Genuchten equations were
modified to add extra flexibility in the description of the hydraulic properties near saturation
[Vogel and Cislerovd, 1988]. The soil water retention, 8(h), and hydraulic conductivity, K(h),
functions in SWMS 2D are given by



em_ea

0,y ——— h<h,
«h) - (1 + Imln)m (2.11)
0, h2h,
and
([ K.K(h) h<h,
h-h)K, -K
K(h) =1 K, + (h B K, -K) h,<h<h (2.12)
h,-h, :
| X hzh,
respectively, where
1/2 2
kK|S | | F(6)-F6) (2.13)
" K, |S,) |F(8)-F(6,)
o-0 " ) (2.14)
F(6) = 1-{ ] '
em - a
m=1-1/n , n>1 (2.15)
6-6
S = r 2.16
978 (2.16)
6 -9
§ =_k T 2.17
“" 35 (2.17)

in which 6, and 6, denote the residual and saturated water contents, respectively, and K, is
the saturated hydraulic conductivity. To increase the flexibility of the analytical expressions,

and to allow for a non-zero air-entry value, A, the parameters 6, and 6, in the retention
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Fig. 2.3. Schematics of the soil water retention (a) and hydraulic conductivity (b) functions
as given by equations (2.11) and (2.12), respectively.

function were replaced by the fictitious (extrapolated) parameters 8, <6, and 6,, =6, as shown
in Fig. 2.3. The approach maintains the physical meaning of 6, and 6, as measurable
quantities. Equation (2.13) assumes that the predicted hydraulic conductivity function is
matched to a measured value of the hydraulic conductivity, K, =K(6,), at some water content,
0,, less that or equal to the saturated water content, i.e., ,<0, and K, <K [Vogel and
Cislerovd, 1988; Luckner et al., 1989].

Inspection of (2.11) through (2.17) shows that the hydraulic characteristics contain
9 unknown parameters: 6,, 6,, 6,, 6, o, n, K,, K, and 6,. When 6,=6,, 6,=0,=6, and
K,=K, the soil hydraulic functions reduce to the original expressions of van Genuchten

[1980]:

03—07

0 + —— — h<0
oy=1 [+ ah]T 2.18)
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KK(h)  h<0 2.19)

K(h) =
h20

s

where

K, =S [1-(1-8/""T (220

2.4. Scaling of the Soil Hydraulic Functions

SWMS 2D implements a scaling procedure designed to simplify the description of
the spatial variability of the unsaturated soil hydraulic properties in the flow domain. The
code assumes that the hydraulic variability in a given area can be approximated by means
of a set of linear scaling transformations which relate the individual soil hydraulic
characteristics &(h) and K(h) to reference characteristics 8'(h") and K'(h"). The technique
is based on the similar media concept introduced by Miller and Miller [1956] for porous
media which differ only in the scale of their internal geometry. The concept was extended
by Simmons et al. [1979] to materials which differ in morphological properties, but which
exhibit ’scale-similar’ soil hydraulic functions. Three independent scaling factors are
embodied in SWMS_2D. These three scaling parameters may be used to define a linear
model of the actual spatial variability in the soil hydraulic properties as follows [Vogel et al.,

1991]:
K(h) = o K*(h ")
o(h) = 6, + ,[6°(h ") - 6] (2.21)
h=aoh*
in which, for the most general case, a,, @, and a, are mutually independent scaling factors

for the water content, the pressure head and the hydraulic conductivity, respectively. Less

general scaling methods arise by invoking certain relationships between oy, a, and/or ay.
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For example, the original Miller-Miller scaling procedure is obtained by assuming a,=1
(with 6* = 8), and ag=e,. A detailed discussion of the scaling relationships given by
(2.21), and their application to the hydraulic description of heterogeneous soil profiles, is
given by Vogel et al. [1991].

2.5. Initial and Boundary Conditions

The solution of Eq. (2.1) requires knowledge of the initial distribution of the pressure

head within the flow domain, Q:

h(x,z,t) =h(x,2) fort=0 (2.22)

where A, is a prescribed function of x and z.
SWMS 2D implements three types of conditions to describe system-independent
interactions along the boundaries of the flow region. These conditions are specified

pressure head (Dirichlet type) boundary conditions of the form

h(x,z,t) = Y(x,z,t) for (x,z) €T, (2.23)
specified flux (Neumann type) boundary conditions given by

-[K (K,-j" % +K)n, =0,(x,2,t) for (x,z) €T, (2.24)

j
and specified gradient boundary conditions

(Kj' % +K)n, =oxzt)  for (x2) €T, (2.25)

J

where T'p, Ty, and T, indicate Dirichlet, Neumann, and gradient type boundary segments,
respectively; ¥ [L], o, [LT"], and o, [-] are prescribed functions of x, z and ¢; and n; are the
components of the outward unit vector normal to boundary T’y or I'z. As pointed out by
McCord [1991], the use of the term "Neumann type boundary condition" for the flux

boundary is not very appropriate since this term should hold for a gradient type condition
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(see also Section 3.2 for solute transport). However, since the use of the Neumann
condition is standard in the hydrologic literature [Neuman, 1972; Neuman et al., 1974], we
shall also use this term to indicate flux boundaries throughout this report. SWMS_2D
implements the gradient boundary condition only in terms of a unit vertical hydraulic
gradient simulating free drainage from a relatively deep soil profile. This situation is often
observed in field studies of water flow and drainage in the vadose zone [Sisson, 1987;
McCord, 1991]. McCord [1991] states that the most pertinent application of (2.25) is its use
as a bottom outflow boundary condition for situations where the water table is situated far
below the domain of interest.

In addition to the system-independent boundary conditions given by (2.23), (2.24),
and (2.25), SWMS 2D considers three different types of system-dependent boundary
conditions which cannot be defined a priori. One of these involves soil-air interfaces which
are exposed to atmospheric conditions. The potential fluid flux across these interfaces is
controlled exclusively by external conditions. However, the actual flux depends also on the
prevailing (transient) soil moisture conditions. Soil surface boundary conditions may change
from prescribed flux to prescribed head type conditions (and vice-versa). In the absence of
surface ponding, the numerical solution of (2.1) is obtained by limiting the absolute value

of the flux such that the following two conditions are satisfied [Neuman et al., 1974]:

KK} < O K )n,| <E (2.26)
ox.

J

and

h,<h<h, 2.27)

where E is the maximum potential rate of infiltration or evaporation under the current
atmospheric conditions, k is the pressure head at the soil surface, and A, and hg are,
respectively, minimum and maximum pressure heads allowed under the prevailing soil
conditions. The value for A, is determined from the equilibrium conditions between soil
water and atmospheric water vapor, whereas h; is usually set equal to zero. SWMS 2D

assumes that any excess water on the soil surface is immediately removed. When one of the

13



end points of (2.27) is reached, a prescribed head boundary condition will be used to
calculate the actual surface flux. Methods of calculating E and A, on the basis of
atmospheric data have been discussed by Feddes et al. [1974].

A second type of system-dependent boundary condition considered in SWMS 2D is
a seepage face through which water leaves the saturated part of the flow domain. In this
case, the length of the seepage face is not known a priori. SWMS 2D assumes that the
pressure head is always uniformly equal to zero along a seepage face. Additionally, the
code assumes that water leaving the saturated zone across a seepage face is immediately
removed by overland flow or some other removal process.

Finally, a third class of system-dependent boundary conditions in SWMS_2D concerns
tile drains. Similarly as for seepage phase, SWMS 2D assumes that as long as a drain is
located in the saturated zone, the pressure head along the drain will be equal to zero; the
drain then acts as a pressure head sink. However, the drain will behave as a nodal
sink/source with zero recharge when located in the unsaturated zone. More information

can be found in Section 4.3.7.
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3. SOLUTE TRANSPORT

3.1. Governing Transport Equation

The partial differential equation governing two-dimensional chemical transport during

transient water flow in a variably saturated rigid porous medium is taken as

aT"tC_+%‘°t_s=.é%(epij§_;)-ag;f +p,0c +pps+v,0+y,p-Sc, (3.1)
where ¢ is the solution concentration [ML?], s is the adsorbed concentration [-], g; is the i-th
component of the volumetric flux [LT"], u, and p, are first-order rate constants for solutes
in the liquid and solid phases [T}, respectively; ¥, and y, are zero-order rate constants for
the liquid [ML*T"!] and solid [T"] phases, respectively; p is the soil bulk density [ML?], S
is the sink term in the water flow equation (2.1), c, is the concentration of the sink term
[ML?], and Dy is the dispersion coefficient tensor [L*T™]. The four zero- and first-order rate
constants in (3.1) may be used to represent a variety of reactions or transformations
including biodegradation, volatilization, precipitation and radioactive decay.

SWMS 2D assumes equilibrium interactions between the solution (c) and adsorbed
(s) concentrations of the solute in the soil system. The adsorption isotherm relating s and

c is described by a linear equation of the form

s=kc (3.2)

where k is an empirical constant [L°M™].

The following continuity equation describes isothermal Darcian flow of water ina

variably saturated porous medium

aq.
96 __%4i _g (3.3)
ot ox,

Substituting (3.2) and (3.3) into (3.1) gives
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oc ac 0 oc
-ORZ= -q — +—(6D.—)+Fc+G =0 34
ot 9 ox, * ax,.( v axj) e (34)

where

F=u 60+ppk+S

(3.5)
G=v,0+y,p-Sc,
and where the retardation factor R [-] is defined as
_1., Pk
R=1+— (3.6)

In order to solve equation (3.4), it is necessary to know the water content 8 and the

volumetric flux g, Both variables are obtained from solutions of the Richards’ equation.

3.2. Initial and Boundary Conditions

The solution of (3.4) requires knowledge of the initial concentration within the flow

region, Q, i.e.,
¢ (x,2,0) =c(x,2) (3.7)
where c; is a prescribed function of x and z.
Two types of boundary conditions (Dirichlet and Cauchy type conditions) can be

specified along the boundary of Q. First-type (or Dirichlet type) boundary conditions

prescribe the concentration along a boundary segment T'j:

c(x,z,t) =c,(x,2,t) for (x,z) €T, (3-8)

whereas third-type (Cauchy type) boundary conditions may be used to prescribe the solute

flux along a boundary segment I as follows:
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dc _
- GD"ja_x.n" +gnc=qnc, for (x,z)eT, (3.9)
J
in which g, n; represents the outward fluid flux, #; is the outward unit normal vector, and c,
is the concentration of the incoming fluid. In some cases, for example when I'¢ is an
impermeable boundary (g;n,=0) or water flow is directed out of the region, (3.9) reduces

to a second-type (Neumann type) boundary condition of the form:

oD, n =0 for (x,z) € T, (3.10)

v axj

3.3. Dispersion Coefficient

The components of the dispersion tensor, Dy, in (3.1) are given by [Bear,1972]

qj qi

6D, =D, |q| §;+ (D, -D;) lél +6D,16, (3.11)

where D, is the ionic or molecular diffusion coefficient in free water [L?T], 7 is a tortuosity
factor [-], |g| is the absolute value of the Darcian fluid flux density [LT"], &; is the
Kronecker delta function (6;=1if i=j, and ;=0 if i#j), and D, and D are the longitudinal
and transverse dispersivities, respectively [L]. The individual components of the dispersion

tensor for two-dimensional transport are as follows:

2 2
q; q;
6D =D +D +6D.1
= “Llgl T4l ¢
q; q: (3.12)
6D =D 2 +D__I_+6D, 1 .
= “Higl Tlql y
4,49
oD_=(D, -D,) >
LT g
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The tortuosity factor is evaluated in SWMS_2D as a function of the water content
using the relationship of Millington and Quirk [1961}:

_ 67/3
e (3.13)

s
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4. NUMERICAL SOLUTION OF THE WATER FLOW EQUATION

The Galerkin finite element method with linear basis functions is used to obtain a
solution of the flow equation (2.1) subject to the imposed initial and boundary conditions.
Since the Galerkin method is relatively standard and has been covered in detail elsewhere
[Neuman, 1975; Zienkiewicz, 1977; Pinder and Gray, 1977], only the most pertinent steps in

the solution process are given here.
4.1. Space Discretization

The flow region is divided into a network of triangular elements. The corners of
these elements are taken to be the nodal points. The dependent variable, the pressure head

function h(x,z,t), is approximated by a function 4’ (x,z,t) as follows

h'(x,z,t) = fj ¢,(x,2) h(t) (4.1)

n=l

where ¢, are piecewise linear basis functions satisfying the condition @,(X,yZ) = 8.m h, ar€
unknown coefficients representing the solution of (2.1) at the nodal points, and N is the total
number of nodal points.

The Galerkin method postulates that the differential operator associated with the

Richards’ equation (2.1) is orthogonal to each of the N basis functions, i.e.,

36 _ 9 4 0h
27 - KKK —
L{ ot ax,.[ & o

]

+K2)] +S},da=0 (42)

Applying Green’s first identity to (4.2), and replacing & by h’, leads to
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a8 KAah
2,:.[( % axj ox

4.3)
) LK(KA O’ . K)n g dr > J‘ (-KKZ ‘;:

i

where 0, represents the domain occupied by element e, and T, is a boundary segment of
clement e. Natural flux-type (Neumann) and gradient type boundary conditions can be
immediately incorporated into the numerical scheme by specifying the line integral in
equation (4.3).

After imposing additional simplifying assumptions to be discussed later, and
performing integration over the elements, the procedure leads to a system of time-

dependent ordinary differential equations with nonlinear coefficients. In matrix form, these

equations are given by

[F] i’% +[A{h} ={Q} - (B} - {D} (4.4)
where

’”dn

\[¢' 45)

K K2 b.b, +K2 (c,b,+b,c,) +K2 c.c,l

B K
_2;4

(4.6)

B, }:KK qu, % 4 - E XK (KZb,+Kic,)
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F_=6,% L¢ndn =5, Y .;Ae 4.7)

Qn = —E al, ‘[¢I¢ndr = —E O'" 'ln (4'8)

D, =Y s, L ¢0da=Y %Ae(3§ +S,) 4.9)

where the overlined variables represent average values over an element e, the subscripts

and j are space direction indices (ij = 1,2), and

1=12,.,N m=12..N n=12..N

b,=z-z, €, =X, ~X;
b; =2, -z, Ci =% ~ % (4.10)
b,=z,-z C, =X; ~X,
=ckbj-cjbk — _K,.+Kj+Kk $ =S‘.+SJ.+S,(
¢ 2 3 3

Equation (4.8) is valid for a flux-type boundary condition. For a gradient-type boundary
condition the variable o, in (4.8) must be replaced by the product of the hydraulic
conductivity K and the prescribed gradient o, (=1). Equations (4.5) through (4.9) hold for
flow in a two-dimensional Cartesian (x,z) domain, as well as for flow in an axisymmetric (x,z)

system in which x is used as the radial coordinate. For plane flow we have

L
c=1 A =7n_ (4.11)

while for axisymmetric flow
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X, X, +X, 1L ”x’” +2x (4.12)
3 "o 3

The subscripts i, j and k in equations (4.10) and (4.12) represent the three corners of a
triangular element e. A, is the area of element e, K and S are the average hydraulic
conductivity and root water extraction values over element e, L, is the length of the
boundary segment connected to node n, and x’, is the x-coordinate of a boundary node
adjacent to node n. The symbol o, in equation (4.8) stands for the flux [LT?] across the
boundary in the vicinity of boundary node n (positive when directed outward of the system).
The boundary flux is assumed to be uniform over each boundary segment. The entries of
the vector Q, are zero at all internal nodes which do not act as sources or sinks for water.

The numerical procedure leading to (4.4) incorporates two important assumptions
in addition to those related to the Galerkin finite element approach. One assumption

concerns the time derivatives of the nodal values of the water content in (4.4). These time

derivatives were weighted according to

) ‘[%@dﬂ
6, _ < o (4.13)

e

(4

This assumption implements mass-lumping which has been shown to improve the rate of
convergence of the iterative solution process [e.g., Neumnan, 1973].

A second assumption in the numerical scheme is related to the anisotropy tensor K*
which is taken to be constant over each element. By contrast, the water content 6, the
hydraulic conductivity K, the soil water capacity C, and the root water extraction rate S, at
a given point in time are assumed to vary linearly over each element, e. For example, the

water content is expanded over each element as follows:
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0(x,z) = 23: 0(x,z,)9,(x,2) for (x,z) e Q, (4.14)

n=1

where 7 stands for the corners of element e. The advantage of linear interpolation is that

no numerical integration is needed to evaluate the coefficients in (4.4).
4.2. Time Discretization

Integration of (4.4) in time is achieved by discretizing the time domain into a
sequence of finite intervals and replacing the time derivatives by finite differences. An
implicit (backward) finite difference scheme is used for both saturated and unsaturated

conditions:

{},,1 {0},

J

[F] + [, {h};., = {Q3; - (B}, - {D}; (4.15)

where j+ 1 denotes the current time level at which the solution is being considered, j refers
to the previous time level, and Af;=¢,,,-t. Equation (4.15) represents the final set of
algebraic equations to be solved. Since the coefficients 0, 4, B, D, and Q (Q only for
gradient-type boundary conditions) are functions of 4, the set of equations is generally highly

nonlinear. Note that vectors D and Q are evaluated at the old time level.
4.3. Numerical Solution Strategy
4.3.1. Iterative Process

Because of the nonlinear nature of (4.15), an iterative process must be used to obtain
solutions of the global matrix equation at each new time step. For each iteration a system
of linearized algebraic equations is first derived from (4.15) which, after incorporation of
the boundary conditions, is solved using either Gaussian elimination or the conjugate

gradient method (see Section 6.5). The Gaussian elimination process takes advantage of
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the banded and symmetric features of the coefficient matrices in (4.15). After inversion, the
coefficients in (4.15) are re-evaluated using the first solution, and the new equations are
again solved. The iterative process continues until a satisfactory degree of convergence is
obtained, i.e., until at all nodes in the saturated (or unsaturated) region the absolute change
in pressure head (or water content) between two successive iterations becomes less than
some small value determined by the imposed absolute pressure head (or water content)
tolerance [Simiinek and Suarez, 1993]. The first estimate (at zero iteration) of the unknown
pressure heads at each time step is obtained by extrapolation from the pressure head values

at the previous two time levels.
4.3.2. Treatment of the Water Capacity Term

The iteration process is extremely sensitive to the method used for evaluating the
water content term (46/ At) in equation (4.15). The present version of SWMS_2D code uses
the "mass-conservative” method proposed by Celia et al. [1990]. Their method has been
shown to provide excellent results in terms of minimizing the mass balance error. The mass-

conservative method proceeds by separating the water content term into two parts:

- j*1 . {e};vl - {a}j 4.16
a— A—— r—— (4:16)

J J J

[F]

{e}jq - {6}1 {8}k:1 - {e}fol

where k+ 1 and k denote the current and previous iteration levels, respectively; and j+1 and
j the current and previous time levels, respectively. Notice that the second term on the right
hand side of (4.16) is known prior to the current iteration. The first term on the right hand

side can be expressed in terms of the pressure head, so that (4.16) becomes

{6}, -{6}; _ By - | o {6)a - {8), 4.17
[ —-— = [FIC], —— F— (4.17)

J j J

where C,,=6,,C,, in which C, represents the nodal value of the soil water capacity. The

first term on the right hand side of (4.17) should vanish at the end of the iteration process
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if the numerical solution converges. This particular feature guarantees relatively small mass

balance errors in the solution.

4.3.3. Time Control

Three different time discretizations are introduced in SWMS 2D: (1) time
discretizations associated with the numerical solution, (2) time discretizations associated with
the implementation of boundary conditions, and (3) time discretizations which provide
printed output of the simulation results (e.g., nodal values of dependent variables, water and
solute mass balance components, and other information about the flow regime).

Discretizations 2 and 3 are mutually independent; they generally involve variable time
steps as described in the input data file. Discretization 1 starts with a prescribed initial time
increment, Ar. This time increment is automatically adjusted at each time level according
to the following rules [Mls, 1982; Vogel, 1987]:

a. Discretization 1 must coincide with time values resulting from discretizations 2

and 3.

b. Time increments cannot become less than a preselected minimum time step, 4t,,;,,
nor exceed a maximum time step, 4t,,, (i.e., 4t,, < At < At,,.).

c. If, during a particular time step, the number of iterations necessary to reach
convergence is <3, the time increment for the next time step is increased by
multiplying At by a predetermined constant >1 (usually between 1.1 and 1.5). If
the number of iterations is 27, At for the next time level is multiplied by a
constant <1 (usually between 0.3 and 0.9).

d. If, during a particular time step, the number of iterations at any time level
becomes greater than a prescribed maximum (usually between 10 and 50), the
iterative process for that time level is terminated. The time step is subsequently
reset to At/3, and the iterative process restarted.

The selection of optimal time steps, 4t, is also influenced by the solution scheme for solute

transport (see Section 5.3.6.).
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43.4. Treatment of Pressure Head Boundary Conditions

Finite element equations corresponding to Dirichlet nodes where the pressure head
is prescribed can, at least in principle, be eliminated from the global matrix equation. An
alternative and numerically simpler approach is to replace the Dirichlet finite element

equations by dummy expressions of the form [Neuman, 1974]

5§ h =y (4.18)

nm m

where §,,, is the Kronecker delta and ¢, is the prescribed value of the pressure head at node
n. The values of A, in all other equations are set equal to ¥, and the appropriate entries
containing ¢, in the left hand side matrix are incorporated into the known vector on the
right-hand side of the global matrix equation. When done properly, this rearrangement will
preserve symmetry in the matrix equation. This procedure is applied only when Gaussian
elimination is used to solve the matrix equation. When the conjugate gradient solver is
used, then the finite element equation representing the Dirichlet node is modified as
follows. The right hand side of this equation is set equal to the prescribed pressure head
multiplied by a large number (10*) and entry on the left hand side representing the
Dirichlet node is set equal to this large number. After solving for all pressure heads, the
value of the flux Q, can be calculated explicitly and accurately from the original finite

element equation associated with node n (e.g., Lynch, 1984).
4.3.5. Flux and Gradient Boundary Conditions

The values of the fluxes O, at nodal points along prescribed flux and gradient
boundaries are computed according to equation (4.8). Internal nodes which act as Neumann

type sources or sinks have values of O, equal to the imposed fluid injection or extraction

rate.
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4.3.6. Atmospheric Boundary Conditions and Seepage Faces

Atmospheric boundaries are simulated by applying either prescribed head or
prescribed flux boundary conditions depending upon whether equation (2.26) or (2.27) is
satisfied [Neuman, 1974). If (2.27) is not satisfied, node n becomes a prescribed head
boundary. I, at any point in time during the computations, the calculated flux exceeds the
specified potential flux in (2.26), the node will be assigned a flux equal to the potential value
and treated again as a prescribed flux boundary.

All nodes expected to be part of a seepage face during code execution must be
identified a priori. During each iteration, the saturated part of a potential seepage face is
treated as a prescribed pressure head boundary with £ =0, while the unsaturated part is
treated as a prescribed flux boundary with 0=0. The lengths of the two surface segments
are continually adjusted [Neuman, 1974] during the iterative process until the calculated
values of Q (equation (4.8)) along the saturated part, and the calculated values of / along
the unsaturated part, are all negative, thus indicating that water is leaving the flow region

through the saturated part of the surface boundary only.
4.3.7. Tile Drains as Boundary Condition

The representation of tile drains as boundary conditions is based on studies by
Vimoke et al. [1963] and Fipps et al. [1986]. The approach uses results of electric analog
experiments conducted by Vimoke and Taylor [1962] who reasoned that drains can be
represented by nodal points in a regular finite element mesh, provided adjustments are
made in the hydraulic conductivity, K, of neighboring elements. The adjustments should

correspond to changes in the electric resistance of conducting paper as follows

K, =KC (4.19)

where K, is the adjusted conductivity [LTY], and C, is the correction factor [-]. C, is

determined from the ratio of the effective radius, d [L], of the drain to the side length, D
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[L], of the square formed by finite elements surrounding the drain node [Vimoke at al.,

1962]:

C,= Zs Yk /€ (4.20)

4~ Z " 138log,p, + 648 - 2.34A4 - 0.48B - 0.12C

0

where Z,' is the characteristic impedance of free space (=376.7 ohms), p, is the
permeability of free space, ¢, is the permittivity of free space, and Z, is the characteristic

impedance of a transmission line analog of the drain. The coefficients in (4.20) are given

by

D
Py= =

d

| 1+04055]

 1-04055"
(4.21)
1+0.163p;°

C1-0.163p}

1+ 0.067p;2
1- 0.067p‘;12

where d is the effective drain diameter to be calculated from the number and size of small
openings in the drain tube [Mohammad and Skaggs, 1984], and D is the size of the square
in the finite element mesh surrounding the drain having adjusted hydraulic conductivities.
The approach above assumes that the node representing a drain must be surrounded by
finite elements (either triangular or quadrilateral) which form a square whose hydraulic
conductivities are adjusted according to (4.19). This method of implementing drains by
means of a boundary condition gives an efficient, yet relatively accurate, prediction of the
hydraulic head in the immediate vicinity of the drain, as well as of the drain flow rate [Fipps
et al., 1986]. More recent studies have shown that the correction factor C, could be further
reduced by a factor of 2 [Rogers and Fouss, 1989] or 4 [Tseng, 1994, personal

communication]. These two studies compared numerical simulations of the flow of ponded
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Fig. 4.1. Pressure head contours (cm) for flow of ponded water into a tile
drain system as calculated analytically and using SWMS_2D with
(a) correction factor C 4 and (b) correction factor C /4.
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water into a tile drain system with an analytical solution given by Kirkham [1949)]. Pressure
head contours calculated numerically with the original correction factor C, (4.20), as well
as with the additionally reduced correction factor C,/4, are compared with the analytical
results in Fig. 4.1 [Tseng, 1994, personal communication]. We emphasize that Figure 4.1
represents only one example; further studies of the single grid point representation of a

subsurface drain may be needed, especially for transient variably-saturated flow conditions.

4.3.8. Water Balance Computations

The SWMS_2D code performs water balance computations at prescribed times for
several preselected subregions of the flow domain. The water balance information for each
subregion consists of the actual volume of water, V in that subregion, and the rate, O, of

inflow or outflow to or from the subregion. ¥ and O are given by

0.+6.+0
V=Vxd _J 'k (4.22)
and
0 = Vv Ve (4.23)
At

respectively, where 6, 6, and 6, are water contents evaluated at the corner nodes of element
e, and where V,,, and V,,, are volumes of water in the subregion computed at the current
and previous time levels, respectively. The summation in (4.22) is taken over all elements
within the subregion.

The absolute error in the mass balance is calculated as

& =V,-V,+ l;TaL,dt - L Y. Q,dt (4.24)

o)

where V, and V, are the volumes of water in the flow domain at time ¢ and zero,

respectively, as calculated with (4.22). The third term on the right-hand side represents the
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cumulative root water uptake amount, while the fourth term gives the cumulative flux
through nodes, np, located along the boundary of the flow domain or at internal source and

sink nodes.

The accuracy of the numerical solution is evaluated in terms of the relative error, ¢,”

[%]), in the water mass balance as follows:

w ||
" 100
, ; (4.25)
max | Y |V -V¢], 1TaLtdt+1E | Q, |dt
Lo

[

where V¢ and V are the volumes of water in element e at times ¢ and zero, respectively.
Note that SWMS_2D does not relate the absolute error to the volume of water in the flow
domain, but instead to the maximum value of two quantities. The first quantity represents
the sum of the absolute changes in water content over all elements, whereas the second
quantity is the sum of the absolute values of all fluxes in and out of the flow domain. The
above error criterion is much stricter than the usual criterion involving the total volume of
water in the flow domain. This is because the cumulative boundary fluxes are often much

smaller than the volume in the domain, especially at the beginning of the simulation.
4.3.9. Computation of Nodal Fluxes

Components of the Darcian flux are computed at each time level during the
simulation only when the water flow and solute transport equations are solved
simultaneously. When the flow equation is being solved alone, the flux components are
calculated only at selected print times. The x- and z-components of the nodal fluxes are

computed for each node n according to:
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qx=_§12[7ixhi+ﬂj+7:hk +K4)
__K, vihi + i+ vhy A
D Y M (426)

vi=Klb, +Klc,
v =KZb, +K/c,

where N, is the number of sub-elements e, adjacent to node n. Einstein’s summation

convention is not used in (4.26).
4.3.10. Water Uptake by Plant Roots

SWMS 2D considers the root zone to consist of all nodes, n, for which the potential
root water uptake distribution, b (see Section 2.2), is greater than zero. The root water
extraction rate is assumed to vary linearly over each element; this leads to approximation
(4.9) for the root water extraction term D, in the global matrix equation. The values of
actual root extraction rate S, in (4.9) are evaluated with (2.9). In order to speed up the
calculations, the extraction rates S, are calculated at the old time level and are not updated
during the iterative solution process at a given time step. SWMS_2D calculates the total

rate of transpiration per unit soil surface length using the equation
T, = _Ll__z kA, S (4.27)
1 e

in which the summation takes place over all elements within the root zone.
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4.3.11. Evaluation of the Soil Hydraulic Properties

At the beginning of a numerical simulation, SWMS_2D generates for each soil type
in the flow domain a table of water contents, hydraulic conductivities, and specific water
capacities from the specified set of hydraulic parameters. The values of 6§, K; and C, in the
table are evaluated at prescribed pressure heads &, within a specified interval (h,, h,). The

entries in the table are generated such that

ivl

= constant (4.28)

which means that the spacing between two consecutive pressure head values increases in a
logarithmic fashion. Values for the hydraulic properties, 8(k), K(h) and C(h), are computed
during the iterative solution process using linear interpolation between the entries in the
table. If an argument h falls outside the prescribed interval (h, h,), the hydraulic
characteristics are evaluated directly from the hydraulic functions, i.e., without interpolation.
The above interpolation technique was found to be much faster computationally than direct
evaluation of the hydraulic functions over the entire range of pressure heads, except when

very simple hydraulic models were used.
4.3.12. Implementation of Hydraulic Conductivity Anisotropy

Since the hydraulic conductivity anisotropy tensor, K*, is assumed to be symmetric,
it is possible to define at any point in the flow domain a local coordinate system for which
the tensor K* is diagonal (i.e., having zeroes everywhere except on the diagonal). The
diagonal entries K;* and K;* of K are referred to as the principal components of K.

The SWMS 2D code permits one to vary the orientation of the local principal
directions from element to element. For this purpose, the local coordinate axes are
subjected to a rotation such that they coincide with the principal directions of the tensor K.
The principal components K;# and K", together with the angle w between the principal

direction of K and the x-axis of the global coordinate system, are specified for each
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element. Each locally determined tensor K* is transformed to the global (x,z) coordinate

system at the beginning of the simulation using the following rules:
K? =K/ cos’w + K sin’w
KA =K/sin’w + K cos’w (4.29)

K= (K, -K)sinw cosw

4.3.12. Steady-State Analysis

All transient flow problems are solved by time marching until a prescribed time is
reached. The steady-state problem can be solved in the same way, i.e., by time marching
until two successive solutions differ less than some prescribed pressure head tolerance.
SWMS 2D implements a faster way of obtaining the steady-state solution without having
to go through a large number of time steps. The steady-state solution for a set of imposed
boundary conditions is obtained directly during one set of iterations at the first time step

by equating the time derivative term in the Richards’ equation (2.1) to zero.
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5. NUMERICAL SOLUTION OF THE SOLUTE TRANSPORT EQUATION

The Galerkin finite element method is also used to solve solute transport equation
(3.4) subject to appropriate initial and boundary conditions. The solution procedure below

largely parallels the approach used for the flow equation.

5.1. Space Discretization

The dependent variable, the concentration function c(x.2,), is approximated by a

finite series ¢’ (x,z,t) of the form

c’(x,z,t) = ﬁ’: ¢, (x,2) ¢ (t) (5.1)

n=1

where ¢, are the selected linear basis functions, c, are the unknown time dependent
coefficients which represent solutions of (3.4) at the finite element nodal points and, as
before, N is the total number of nodal points. Application of the standard Galerkin method

leads to the following set of N equations

8

( 6D, __) +Fc+Glegda=0 (5.2)
ax,. 8

f [- 8R
Application of Green’s theorem to the second derivatives in (5.2) and substitution of ¢ by
¢’ results in the following system of time-dependent differential equations

Oc’ , oc’
+Fc +G)e, - Ban

dc
N

(5.3)
+E I BD ne, ar=0

or in matrix form:
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(01 24E L is)ey + () =~ (2" (5.4)

where

0. E( 0R),j¢, ¢dn-—2 ‘(38R+8R)6 (5.5)
- Tl [0 n da-(6D,), qu,"’"’ B g+, [0t
. (5.6)
>z "‘(34 q,) - ”‘( 4,+4,) +—=(3F +F,+F,)(1+6,)~
- 4LA¢ [b.b 6D_+(b,c,+c,b,) 6D, +c c.6D_))
(5.7)

=X G, 1[«ra,w!n Z

in which the overlined variables represent average values over a given element e. The
notation in the above equations is similar as in (4.10). The boundary integral in (5.3)
represents the dispersive flux, 0, across the boundary and will be discussed later in Section
5.34.

The derivation of equations (5.5) through (5.7) used several important assumptions
in addition to those involved in the Galerkin finite element approach [Huyakorn and Pinder,
1983; van Genuchten, 1978]. First, the different coefficients under the integral signs (6R,
g, 6D,

variable, i.e., in terms of their nodal values and associated basis functions. Second, mass

F, G) were expanded linearly over each element, similarly as for the dependent

lumping was invoked by redefining the nodal values of the time derivative in (54) as

weighted averages over the entire flow region:
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)> _Lakﬁgbndn
dcn e . ot

= (5.8)
a -[equndn

5.2. Time Discretization

The Galerkin method is used only for approximating the spatial derivatives while the
time derivatives are discretized by means of finite differences. A first-order approximation

of the time derivatives leads to the following set of algebraic equations:

{c}u-{c),

L+ elSha{cha + (1-)IS)Le), + edf)u + (1= )i} =0 (5.9)

[0],..

where j and j+1 denote the previous and current time levels, respectively; At is the time
increment, and ¢ is a time weighing factor. The incorporation of the dispersion flux, Q>
into matrix [Q] and vector {f} is discussed in Section 5.3.4. The coefficient matrix [Q];, . is
evaluated using weighted averages of the current and previous nodal values of 8 and R.

Equation (5.9) can be rewritten in the form:

[Gl{c};.,={8} (5.10)
where

21 .
[G] =110 €[S, s

{g} =_Al?[Q]j.¢{C}j _(1 - €)[S]j{C}j - e{f}jq —(1 - 6){f}j

Higher-order approximations for the time derivative in the transport equation were

derived by van Genuchten [1976, 1978). The higher-order effects may be incorporated into
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the transport equation by introducing time-dependent dispersion corrections as follows

i =D, - 99,4

Y0 6@’R
(5.12)

Y 66°R

where the superscripts + and - indicate evaluation at the old and new time levels,

respectively.
5.3. Numerical Solution Strategy
5.3.1. Solution Process

The solution process at each time step proceeds as follows. First, an iterative
procedure is used to obtain the solution of the Richards’ equation (2.1) (see Section 4.3.1).
After achieving convergence, the solution of the transport equation (5.10) is implemented.
This is done by first determining the nodal values of the fluid flux from nodal values of the
pressure head by applying Darcy’s law. Nodal values of the water content and the fluid flux
at the previous time level are already known from the solution at the previous time step.
Values for the water content and the fluid flux are subsequently used as input to the
transport equation, leading to the system of linear algebraic equations given by (5.10). The
structure of the final set of equations depends upon the value of the temporal weighing
factor, €. The explicit (e =0) and fully implicit (€ =1) schemes require that the global matrix
[G] and the vector {g} be evaluated at only one time level (the previous or current time
level). All other schemes require evaluation at both time levels. Also, all schemes except
for the explicit formulation (€ =0) lead to an asymmetric banded matrix [G]. The associated
set of algebraic equations is solved using either a standard asymmetric matrix equation
solver [e.g., Neuman, 1972], or the ORTHOMIN method [Mendoza et al., 1991], depending
upon the size of final matrix. By contrast, the explicit scheme leads to a diagonal matrix [G]

which is much easier to solve (but generally requires smaller time steps). Since transport
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is assumed to be independent of changes in the fluid density, one may proceed directly to

the next time level once the transport equation is solved for the current time level.

5.3.2. Upstream Weighted Formulation

Upstream weighing is provided as an option in SWMS_2D to minimize some of the
problems with numerical oscillations when relatively steep concentration fronts are being
simulated. For this purpose the second (flux) term of equation (5.3) is not weighted by
regular linear basis functions ¢,, but instead using the nonlinear functions ¢,* [Yeh and

Tripathi, 1990]
¢v=L, -3asL,L, +30rL,L,
¢*=L,-3a"L,L,+3a’L,L, (5.13)

¢¢=L,-3aL L, +3a’L,L,

3

where o is a weighing factor associated with the length of the element opposite to node
i, and L, are the local coordinates. The weighing factors are evaluated using the equation
of Christie et al. [1976]:
o = coth(%E) - 22 (5.14)
2D" ulL

where u, D and L are the flow velocity, dispersion coefficient and length associated with side
i. The weighing functions ¢* ensure that relatively more weight is placed on the flow
velocities of nodes located at the upstream side of an element. Evaluating the integrals in
(5.3) shows that the following additional terms must be added to the entries of global matrix

S, in equation (5.6):
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e/ e b w w w w w w
Sy =Sy -4—(’)[24,,1(02 ~ay) +q,(a; -203) +q,(20; - o3)]

(5.15)
C. w w v v N "
=75 (292 — ) +g,(e} ~203) +4,(202 ~05)]
el (-4 b] w w w w w w
SZf =Sﬁ “—4—6[qx1(2(!3 _al) +2qﬁ(a3 _al) +qx3(a3 —2al)]
(5.16)
C. w w " v v v
'4—6[(121(2(13 —af) +2q, (o5 - ap) +g, (o -2a;)]
and
e/ e b] w w w w w w
S3f =S3j _m[qxl(al -2(22) +qxz(2a1 'az) +2¢Ix3(011 -(12)]
(5.17)

C; w w w w w W
- 1[q,(] -2¢7) +q,(20] - ;) +2g,,(¢ - ;)]
40

The weighing factors are applied only to those element sides that are inclined within

20 degrees from the flow direction.
5.3.3. Implementation of First-Type Boundary Conditions

Individual equations in the global matrix equation which correspond to nodes at

which the concentration is prescribed are replaced by new equations:

8,.C, =C (5.18)

m n0

where c,, is the prescribed value of the concentration at node n. This is done only when
Gaussian elimination is used to solve the matrix equation. A similar procedure as for water
flow (described in Section 4.3.4) is applied when the ORTHOMIN method is used. Because

of asymmetry of the global matrix [G], no additional manipulations are needed in the
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resulting system of equations as was the case for the water flow solution.

The total material flux, 9,7, through a boundary at node n consists of the dispersive

flux, 0,7, and the convective flux, Q,*:

0, =0+

(5.19)

The dispersive boundary nodal flux is not known explicitly but must be calculated from

equation (5.4). Hence, the dispersion flux, Q,”, for node n can be calculated as

D_ j*1 P Ypd - it e ¢’ -ci
Qn -"[GS,,,,, +(1-€)Snm]Cm—€n _(1 €)fn T

The convective flux is evaluated as

0.7 =0c,

where the fluid flux Q, is known from the solution of the water flow equation.

5.3.4. Implementation of Third-Type Boundary Conditions

Equation (3.9) is rewritten as follows

oc’
GD —n, n(c—c
A rRaL [(c—<,)

]

When substituted into the last term of (5.3), the boundary integral becomes

E I 6D ¢ nedr=0c, -0.c,

(5.20)

(5.21)

(5.22)

(5.23)

The first term on the right-hand side of (5.23) represents the convective flux. This term is

incorporated into the coefficient matrix [S] of (5.4). The last term of (5.23) represents the

total material flux, which is added to the known vector {f}.

At nodes where free outflow of water and its dissolved solutes takes place, the exit

concentration ¢, is equal to the local (nodal) concentration c,. In this case the dispersive
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flux becomes zero and the total material flux through the boundary is evaluated as

Q"T =Q.c, (5.24)

5.3.5. Mass Balance Calculations

The total amount of mass in the entire flow domain, or in a preselected subregion,

is given by

ORc +0Rc +O.R
M=Y ‘LBRcdn=Eer G ;Cﬁ K (5.25)

where 6,,, R, and c;;, represent, respectively, water contents, retardation factors, and
concentrations evaluated at the corner nodes of element e. The summation is taken over

all elements within the specified region.

The cumulative amounts M° and M* of solute removed from the flow region by zero-

and first-order reactions, respectively, are calculated as follows

M°= —j): f (v,8+7v,p)dndt (5.26)

(]

M!= —IE .[ (6 +p, pk)cdadt (5.27)
0 ¢ e

whereas the cumulative amount M, of solute taken up by plant roots is given by

M =jz LSc:dndt (5.28)

0 €R

where e represents the elements making up the root zone.

Finally, when all boundary material fluxes, decay reactions, and root uptake mass
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fluxes have been computed, the following mass balance should hold for the flow domain as

a whole:

M -M, = +£2 Qdt -M°-M*'-M, (5.29)
P

where M, and M, are the amounts of solute in the flow region at times ¢ and zero,
respectively, as calculated with (5.25), and n; represents nodes located along the boundary
of the flow domain or at internal sinks and/or sources. The difference between the left- and
right-hand sides of (5.29) represents the absolute error, €., in the solute mass balance.
Similarly as for water flow, the accuracy of the numerical solution for solute transport is

evaluated by using the relative error, €, [%)], in the solute mass balance as follows

100 | €; |
€ =
’ : (5.30)
max| ¥ |M,°-My|, [M°| +|M*| +|M,]| +IE IQnTIdt]

Ky

where My and M/ are the amounts of solute in element e at times 0 and ¢, respectively.
Note again that SWMS_2D does not relate the absolute error to the total amount of mass
in the flow region. Instead, the program uses as a reference the maximum value of (1) the
absolute change in element concentrations as summed over all elements, and (2) the sum
of the absolute values of all cumulative solute fluxes across the flow boundaries including

those resulting from sources and sinks in the flow domain.

5.3.6. Oscillatory Behavior

Numerical solutions of the transport equation often exhibit oscillatory behavior
and/or excessive numerical dispersion near relatively sharp concentration fronts. These
problems can be especially serious for convection-dominated transport characterized by
small dispersivities. One way to partially circumvent numerical oscillations is to use

upstream weighing as discussed in Section 5.3.2. Undesired oscillations can often be
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prevented also by selecting an appropriate combination of space and time discretizations.
Two dimensionless numbers may be used to characterize the space and time discretizations.
One of these is the grid Peclet number, Pef, which defines the predominant type of the
solute transport (notably the ratio of the convective and dispersive transport terms) in

relation to coarseness of the finite element grid:

_q,4x,

Pe/ = (5.31)
“ 8D,

where Ax; is the characteristic length of a finite element. The Peclet number increases when
the convective part of the transport equation dominates the dispersive part, i.e., when a
relatively steep concentration front is present. To achieve acceptable numerical results, the
spatial discretization must be kept relatively fine to maintain a low Peclet number.
Numerical oscillation can be virtually eliminated when the local Peclet numbers do not
exceed about 5. However, acceptably small oscillations may be obtained with local Peclet
numbers as high as 10 [Huyakorn and Pinder, 1983].

A second dimensionless number which characterizes the relative extent of numerical
oscillations is the Courant number, Crf. The Courant number is associated with the time
discretization as follows

cre= 94 (5.32)
OR Ax,

Three stabilizing options are used in SWMS_2D to avoid oscillations in the numerical
solution of the solute transport equation [Simiinek and Suarez, 1993]. One option is
upstream weighing (see Section 5.3.2), which effectively eliminates undesired oscillations at
relatively high Peclet numbers. A second option for minimizing or eliminating numerical

- oscillations uses the following criterion developed by Perrochet and Berod [1993]

Pe-Cr< =2 (533)

where o, is the performance index [-]. This criterion indicates that convection-dominated

transport problems having large Pe numbers can be safely simulated provided Cr is reduced
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according to (5.33) [Perrochet and Berod, 1993]. When small oscillations in the solution are
tolerated, w, can be increased to about 5 or 10.

A third stabilizing option implemented in SWMS_2D also utilizes criterion (5.33).
However, instead of decreasing Cr to satisfy equation (5.33), this option introduces artificial
dispersion to decrease the Peclet number. The amount of additional longitudinal dispersion,

ISL [L], is given by [Perrochet and Berod, 1993]

5 -lalar_p 0D (5.34)
L ORw, L lql

The maximum permitted time step is calculated using all three options, as well as the
additional requirement that the Courant number must remain less than or equal to 1. The
time step calculated in this way is subsequently used as one of the time discretization rules

(rule No. B) discussed in section 4.3.3.
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6. PROBLEM DEFINITION

6.1. Construction of Finite Element Mesh

The finite element mesh is constructed by dividing the flow region into quadrilateral
and/or triangular elements whose shapes are defined by the coordinates of the nodes that
form the element corners. The program automatically subdivides the quadrilaterals into
triangles which are then treated as subelements.

Transverse lines [Neuman, 1974] formed by element boundaries should transect the
mesh along the general direction of its shortest dimension. These transverse lines must be
continuous and non-intersecting, but need not be straight. The nodes are numbered
sequentially from 1 to NumNP (total number of nodes) by proceeding along each transverse
line in the same direction. Elements are numbered in a similar manner. The maximum
number of nodes on any transverse line, IJ, is used to determine the effective size of the
finite element matrix (i.e., its bandwidth). To minimize memory and time requirements, i
should be kept as small as possible. The above rules for defining the finite element mesh
apply only when Gaussian elimination is used to solve the matrix equations. Iterative
methods (such as the conjugate gradient and ORTHOMIN methods) are not so restrictive
since only non-zero entries in the coefficient matrix are stored in memory, and since the
computational efficiency is less dependent upon the bandwidth of the matrix as compared
to direct equation solvers.

The finite element dimensions must be adjusted to a particular problem. They
should be made relatively small in directions where large hydraulic gradients are expected.
Regions with sharp gradients are usually located in the vicinity of the internal sources or
sinks, or close to the soil surface where highly variable meteorological factors can cause fast
changes in pressure head. Hence, we recommend to normally use relatively small elements
at and near the soil surface. The size of elements can gradually increase with depth to
reflect the generally much slower changes in pressure heads at deeper depths. The element

dimensions should also depend upon the soil hydraulic properties. For example, coarse-
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textured soils having relatively values of high n-values and small a-values (see Eqgs. (2.11)
and (2.18)) generally require a finer discretization than fine-textured soils. We also
recommend using elements having approximately equal sizes to decrease numerical errors.
For axisymmetric three-dimensional flow systems, the vertical axis must coincide with, or be
to the left of, the left boundary of the mesh. No special restrictions are necessary to

facilitate the soil root zone.
6.2. Coding of Soil Types and Subregions

Soil Types - An integer code beginning with 1 and ending with NMat (the total
number of soil materials) is assigned to each soil type in the flow region. The appropriate
material code is subsequently assigned to each nodal point 7 of the finite element mesh.

Interior material interfaces do not coincide with element boundaries. When different
material numbers are assigned to the corner nodes of a certain element, material properties
of this element will be averaged automatically by the finite element algorithm. This
procedure will somewhat smooth soil interfaces.

A set of soil hydraulic parameters and solute transport characteristics must be
specified for each soil material. Also, the user must define for each element the principal
components of the conductivity anisotropy tensor, as well as the angle between the local and
global coordinate systems.

As explained in Section 2.3, one additional way of changing the unsaturated soil
hydraulic properties in the flow domain is to introduce scaling factors associated with the
water content, the pressure head and the hydraulic conductivity. The scaling factors are

assigned to each nodal point 7 in the flow region.

Subregions - Water and solute mass balances are computed separately for each
specified subregion. The subregions may or may not coincide with the material regions.
Subregions are characterized by an integer code which runs from 1 to NLay (the total

number of subregions). A subregion code is assigned to each element in the flow domain.
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6.3. Coding of Boundary Conditions

Flow boundary conditions were programmed in a fairly similar way as done in the
UNSAT1 and UNSAT2 models of Neuman [1972] and Neuman et al. [1974]. Unit vertical
hydraulic gradient boundary conditions simulating free drainage are implemented in this
version 1.21 of SWMS_2D, in addition to the boundary conditions used in version 1.1. A
boundary code, Kode(n), must be assigned to each node, n. If node 7 is to have a prescribed
pressure head during a time step (Dirichlet boundary condition), Kode(n) must be set
positive during that time step. If the volumetric flux of water entering or leaving the system
at node n is prescribed during a time step (Neumann boundary condition), Kode(n) must be

negative or zero.

Constant Boundary Conditions - The values of constant boundary conditions for a
particular node, n, are given by the initial values of the pressure head, h(n), in case of
Dirichlet boundary conditions, or by the initial values of the recharge/discharge flux, Q(n),
in case of Neumann boundary conditions. Table 6.1 summarizes the use of the variables

Kode(n), O(n) and h(n) for various types of nodes.

Table 6.1. Initial settings of Kode(n), Q(n), and h(n) for constant boundary conditions.

Node Type Kode(n) on) h(n)
Internal; not sink/source 0 0.0 Initial Value
Internal; sink/source 1 0.0 Prescribed
(Dirichlet condition)

Internal; sink/source -1 Prescribed Initial Value
(Neumann condition)

Impermeable Boundary 0 0.0 Initial Value
Specified Head Boundary 1 0.0 Prescribed
Specified Flux Boundary -1* Prescribed Initial Value

t 5 and/or 6 may also be used
* .5 and/or -6 may also be used
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Variable Boundary Conditions - Three types of variable boundary conditions can be
imposed:

1. Atmospheric boundary conditions for which Kode(n)= 4,

2. Variable pressure head boundary conditions for which Kode(n)=+3, and

3. Variable flux boundary conditions for which Kode(n) =-3.

These conditions can be specified along any part of the boundary. It is not possible to
specify more than one time-dependent boundary condition for each type. Initial settings of

the variables Kode(n), Q(n) and h(n) for the time-dependent boundary conditions are given

in Table 6.2.

Table 6.2. Initial settings of Kode(n), Q(n), and h(n) for variable boundary conditions.

Node Type Kode(n) om) h(n)

Atmospheric Boundary —4 0.0 Initial Value
Variable Head Boundary +3 0.0 Initial Value
Variable Flux Boundary =3 0.0 Initial Value

Atmospheric boundary conditions are implemented when Kode(n) = +4, in which case
time-dependent input data for the precipitation, Prec, and evaporation, rSoil, rates must be
specified in the input file ATMOSPH.IN. The potential fluid flux across the soil surface is
determined by rAtm= rSoil-Prec. The actual surface flux is calculated internally by the
program. Two limiting values of the surface pressure head must be provided: ACritS which
specifies the maximum allowed pressure head at the soil surface (usually 0.0), and hCritA
which specifies the minimum allowed surface pressure head (defined from equilibrium
conditions between soil water and atmospheric vapor). The program automatically switches
the value of Kode(n) from -4 to +4 if one of these two limiting points is reached. Table 6.3
summarizes the use of the variables rAtm, hCritS and hCritA during program execution.

Width(n) in this table denotes the length of the boundary segment associated with node n.
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Table 6.3. Definition of the variables Kode(n), Q(n) and h(n)
when an atmospheric boundary condition is applied.

Kode(n) Qn) h(n) Event
—4 -Width(n)*rAtm Unknown rAtm =rSoil-Prec
+4 Unknown hCritA Evaporation capacity
is exceeded
+4 Unknown hCritS Infiltration capacity
is exceeded

Variable head and flux boundary conditions along a certain part of the boundary are
implemented when Kode(n)=+3 and -3, respectively. In that case, the input file
ATMOSPH.IN must contain the prescribed time-dependent values of the pressure head, ht,
or the flux, rt, imposed along the boundary. The values of At or 7t are assigned to particular

nodes at specified times according to rules given in Table 6.4.

Table 6.4. Definition of the variables Kode(n), Q(n) and h(n)
when variable head or flux boundary conditions are applied.

Node Type Kode(n) Q(n) h(n)
Variable Head Boundary +3 Unknown ht
Variable Flux Boundary -3 -Width(n)*rt Unknown

Water Uptake by Plant Roots - The program calculates the rate at which plants extract
water from the soil root zone by evaluating the term D (equation (4.9)) in the finite element
formulation. The code requires that Kode(n) be set equal to 0 or negative for all nodes in
the root zone. Values of the potential transpiration rate, rRoot, must be specified at
preselected times in the input file ATMOSPH.IN. Actual transpiration rates are calculated

internally by the program as discussed in Section 2.2. The root uptake parameters are taken
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from input file SELECTOR.IN. Values of the function Beta(n), which describes the
potential water uptake distribution over the root zone (equation (2.5)), must be specified
for each node in the flow domain (see the description of input Block H in Table 8.8 of

Section 8). All parts of the flow region where Beta(n)>0 are treated as the soil root zone.

Deep Drainage from the Soil Profile - Vertical drainage, g(h), across the lower
boundary of the soil profile is sometimes approximated by a flux which depends on the
position of groundwater level (e.g., Hopmans and Stricker, 1989). If available, such a
relationship can be implemented in the form of a variable flux boundary condition for which
Kode(n)=-3. This boundary condition is implemented in SWMS_2D by setting the logical
variable gGWLF in the input file ATMOSPH.IN equal to ".true." The discharge rate Q(n)
assigned to node n is determined in the program as QO(n)=-Width(n)*q(h) where h is the
local value of the pressure head, and g(h) is given by

q(h) = -A,exp(B,, |h ~-GWLOL|) (6.1)

where A, and B, are empirical parameters which must be specified in the input file
ATMOSPHL.IN, together with GWLOL which represents the reference position of the

groundwater level (usually set equal to the z-coordinate of the soil surface).

Free Drainage - Unit vertical hydraulic gradient boundary conditions can be
implemented in the form of a variable flux boundary condition for which Kode(n)=-3. This
boundary condition is implemented in SWMS_2D by setting the logical variable FreeD in
the input file SELECTOR.IN equal to ".true.". The program determines the discharge rate
Q(n) assigned to node n as Q(n)=-Width(n)*K(h), where h is the local value of the pressure

head, and K(h) is the hydraulic conductivity corresponding to this pressure head.

Seepage Faces - The initial settings of the variables Kode(n), Q(n) and h(n) for nodes
along a seepage face are summarized in Table 6.5. All potential seepage faces must be

identified before starting the numerical simulation. This is done by providing a list of nodes
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along each potential seepage face (see input Block E as defined in Table 8.5 of Section 8).

Table 6.5. Initial setting of Kode(n), Q(n), and h(n) for seepage

faces.
Node Type Kode(n) Q) h(n)
Seepage Face +2 0.0 0.0
(initially saturated)
Seepage Face -2 0.0 Initial Value
(initially unsaturated)

Drains - Table 6.6 summarizes the initial settings of the variables Kode(n), O(n) and
h(n) for nodes representing drains. All drains must be identified before starting the
numerical simulation. This is done by providing a list of nodes representing drains, together
with a list of elements around each drain whose hydraulic conductivities are to be adjusted
according to discussion in Section 4.3.7 (see also input Block F as defined in Table 8.6 of

Section 8).

Table 6.6. Initial setting of Kode(n), Q(n), and h(n) for drains.

Node Type Kode(n) om) h(n)
Drain +5 0.0 0.0
(initially saturated)
Drain =5 0.0 Initial Value

(initially unsaturated)

Solute Transport Boundary Conditions. The original version 1.1. of SWMS 2D
[Simiinek et al., 1992] assumed a strict relationship between the boundary conditions for
water flow and solute transport. A first-type boundary condition for water flow forced the
boundary condition for solute transport also to be of the first-type. Similarly, a second-type

boundary condition for water flow induced a second- or third-type boundary condition for
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solute transport depending upon the direction of the water flux. These strict relationships
between the boundary conditions for water flow and solute transport have been abandoned
in version 1.21. Selection of the type of boundary condition for the solute transport is now
much more independent of the boundary condition implemented for water flow. The type
of boundary condition to be invoked for solute transport is specified by the input variable
KodCB. A positive sign of this variable means that a first-type boundary condition will be
used. When KodCB is negative, SWMS_2D selects a third-type boundary condition when
the calculated water flux is directed into the region, or a second-type boundary condition
when the water flux is zero or directed out of the region. One exception to these rules
occurs for atmospheric boundary conditions when Kode(n)=+4 and Q(n)<0. SWMS_2D
assumes that solutes cannot leave the flow region across atmospheric boundaries. The
solute flux in this situation becomes zero, i.e., c,=0 in equation (5.22). Cauchy and
Neumann boundary conditions are automatically applied to internal sinks/sources depending
upon the direction of water flow. The dependence (or independence) of the solute
boundary conditions on time or the system is then still defined through the variable Kode(n)
as discussed above.

Although SWMS 2D can implement first-type boundary conditions, we recommend
users to invoke third-type conditions where possible. This is because third-type conditions,
in general, are physically more realistic and preserve solute mass in the simulated system
(e.g., van Genuchten and Parker [1984]; Leij et al. [1991]).

6.4. Program Memory Requirements

One single parameter statement is used at the beginning of the code (see the second
statement of the source code listed in Section 10.3) to define the problem dimensions. All
major arrays in the program are adjusted automatically according to these dimensions. This
feature makes it possible to change the dimensions of the problem to be simulated without
having to recompile all program subroutines. Different problems can be investigated by

changing the dimensions in the parameter statement at the beginning of the main program,
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and subsequently linking all previously compiled subroutines with the main program when
creating an executable file. Table 6.7 lists the array dimensions which must be defined in

the parameter statement.

Table 6.7. List of array dimensions in SWMS_2D.

Dimension Description

NumNPD Maximum number of nodes in finite element mesh
NumEID Maximum number of elements in finite element mesh
MBandD Maximum dimension of the bandwidth of matrix 4 when

Gaussian elimination is used. Maximum number of nodes
adjacent to a particular node, including itself, when
iterative matrix solvers are used.

NumBPD Maximum number of boundary nodes for which
Kode(n)=0

NSeepD Maximum number of seepage faces

NumSPD Maximum number of nodes along a seepage face

NDrD Maximum number of drains

NEIDrD Maximum number of elements surrounding a drain

NMatD Maximum number of materials

NTabD Maximum number of items in the table of hydraulic

properties generated by the program for each soil material

NumKD Maximum number of available code number values (equals
6 in present version)

NObsD Maximum number of observation nodes for which values
of the pressure head, the water content, and concentration
are printed at each time level

MNorth Maximum number of orthogonalizations performed when
iterative solvers are used

6.5. Matrix Equation Solvers

Discretization of the governing partial differential equations for water flow (2.1) and

solute transport (3.4) leads to the system of linear equations
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[4]{x} ={b} (6.2)

in which matrix [4] is symmetric for water flow and asymmetric for solute transport.

The original version of SWMS 2D [Simiinek et al., 1992] used Gaussian elimination
to solve both systems of linear algebraic equations. The invoked solvers took advantage of
the banded nature of the coefficient matrices and, in the case of water flow, of the
symmetric properties of the matrix. Such direct solution methods have several disadvantages
as compared to iterative methods. Direct methods require a fixed number of operations
(depending upon the size of the matrix) which increases approximately by the square of the
number of nodes [Mendoza et al, 1991]. Iterative methods, on the other hand, require a
variable number of repeated steps which increase at a much smaller rate (about 1.5) with
the size of a problem [Mendoza et al., 1991]. A similar reduction also holds for the memory
requirement since iterative methods do not require the storage of non-zero matrix elements.
Memory requirements, therefore, increase at a much smaller rate with the size of the
problem when iterative solvers are used [Mendoza et al, 1991]. Round-off errors also
represent less of a problem for iterative methods as compared to direct methods. This is
because round-off errors in iterative methods are self-correcting [Letniowski, 1989]. Finally,
for time-dependent problems, a reasonable approximation of the solution (i.e., the solution
at the previous time step) exists for iterative methods, but not for direct methods
[Letniowski, 1989]. In general, direct methods are more appropriate for relatively small
problems, while iterative methods are more suitable for larger problems.

Many iterative methods have been used in the past for handling large sparse matrix
equations. These methods include Jacobi, Gauss-Seidel, alternating direction implicit (ADI),
block successive over-relaxation (BSSOR), successive line over-relaxation (SLOR), and
strongly implicit procedures (SIP), among others [Letniowski, 1989). More powerful
preconditioned accelerated iterative methods, such as the preconditioned conjugate gradient
method (PCG) [Behie and Vinsome, 1982], were introduced more recently. Sudicky and
Huyakorn [1991] gave three advantages of the PCG procedure as compared to other

iterative methods: PCG can be readily applied to finite element methods with irregular
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grids, the method does not require iterative parameters, and PCG usually outperforms its
iterative counterparts for situations involving relatively stiff matrix conditions.

The current version 1.21 of SWMS_2D implements both direct and iterative methods
for solving the system of linear algebraic equations given by (6.2). Depending upon the size
of matrix [4], we use either direct Gaussian elimination or the preconditioned conjugate
gradient method [Mendoza et al., 1991] for water flow and the ORTHOMIN (preconditioned
conjugate gradient squared) procedure [Mendoza et al., 1991] for solute transport. Gaussian
elimination is used if either the bandwith of matrix [4] is smaller than 20, or the total
number of nodes is smaller than 500. The iterative methods used in SWMS_2D were
adopted from the ORTHOFEM software package of Mendoza et al. [1991].

The preconditioned conjugate gradient and ORTHOMIN methods consist of two
essential parts: initial preconditioning, and iterative solution with either conjugate gradient
or ORTHOMIN acceleration [Mendoza et al, 1991]. Incomplete lower-upper (ILU)
preconditioning is used in ORTHOFEM when matrix [4] is factorized into lower and upper
triangular matrices by partial Gaussian elimination. The preconditioned matrix is
subsequently repeatedly inverted using updated solution estimates to provide a new
approximation of the solution. The orthogonalization-minimization acceleration technique
is used to update the solution estimate. This technique insures that the search direction for
each new solution is orthogonal to the previous approximate solution, and that either the
norm of the residuals (for conjugate gradient acceleration [Meijerink and van der Vorst,
1981]) or the sum of squares of the residuals (for ORTHOMIN [Behie and Vinsome, 1982])
is minimized. More details about the two methods is given in the user’s guide of
ORTHOFEM [Mendoza et al., 1991] or in Letniowski [1989]. Letniowski [1989] also gives
a comprehensive review of accelerated iterative methods, as well as of different

preconditioning techniques.
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7. EXAMPLE PROBLEMS

Four example problems are presented in this section. Examples 1 and 2 provide
comparisons of the water flow part of SWMS_2D code with results from both the UNSAT2
code of Neumnan [1974] and the SWATRE code of Belmans et al. [1983]. Example 3 serves
to verify the accuracy of the solute transport part of SWMS_2D by comparing numerical
results against those obtained with a two-dimensional analytical solution during steady-state
groundwater flow. Example 4 shows numerical results for a field infiltration experiment
involving a two-layered axisymmetric three-dimensional flow domain. The input and output

files of the examples are listed at the end of Sections 8 and 9, respectively.

7.1. Example 1 - Column Infiltration Test

This example simulates a one-dimensional laboratory infiltration experiment discussed
by Skaggs et al. [1970). The example was used later by Davis and Neuman [1983] as a test
problem for the UNSAT2 code. Hence, the example provides a means of comparing results
obtained with the SWMS 2D and UNSAT2 codes.

Figure 7.1 gives a graphical representation of the soil column and the finite element
mesh used for the numerical simulations. The soil water retention and relative hydraulic
conductivity functions of the sandy soil are presented in Figure 7.2. The soil was assumed
to be homogenous and isotropic with a saturated hydraulic conductivity of 0.0433 cm/min.
The initial pressure head of the soil was taken to be -150 cm. The column was subjected
to ponded infiltration (a Dirichlet boundary condition) at the soil surface, resulting in one-
dimensional vertical water flow. The open bottom boundary of the soil column was
simulated by implementing a no-flow boundary condition during unsaturated flow (h <0),
and a seepage face with #=0 when the bottom boundary becomes saturated (this last
condition was not reached during the simulation). The impervious sides of the column were

simulated by imposing no-flow boundary conditions.
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Fig. 7.1. Flow system and finite element mesh for example 1.

The simulation was carried out for 90 min, which corresponds to the total time
duration of the experiment. Figure 7.3 shows the calculated instantaneous (go) and
cumulative (I,) infiltration rates simulated with SWMS_2D. The calculated results agree

closely with those obtained by Davis and Neuman [1983] using their UNSAT2 code.
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Fig. 7.3. Instantaneous, g,, and cumulative, I, infiltration rates simulated with the SWMS 2D
(solid lines) and UNSAT? (triangles) codes for example 1.
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1.2. Example 2 - Water Flow in a Field Soil Profile Under Grass

'This example considers one-dimensional water flow in a field profile of the Hupselse
Beek watershed in the Netherlands. Atmospheric data and observed ground water levels
provided the required boundary conditions for the numerical model. Calculations were
performed for the period of April 1 to September 30 of the relatively dry year 1982.
Simulation results obtained with SWMS 2D will be compared with those generated with the
SWATRE computer program [Feddes et al., 1978, Belmans et al., 1983].

The soil profile (Fig. 7.4) consisted of two layers: a 40-cm thick A-horizon, and a
B/C-horizon which extended to a depth of about 300 cm. The depth of the root zone was
30 cm. The mean scaled hydraulic functions of the two soil layers in the Hupselse Beek

area [Cislerovd, 1987, Hopmans and Stricker, 1989] are presented in Figure 7.5.
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Fig. 7.4. Flow system and finite element mesh
for example 2.
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The soil surface boundary conditions involved actual precipitation and potential
transpiration rates for a grass cover. The surface fluxes were incorporated by using average
daily rates distributed uniformly over each day. The bottom boundary condition consisted
of a prescribed drainage flux - groundwater level relationship, q(h), as given by equation
(6.1). The groundwater level was initially set at 55 cm below the soil surface. The initial
moisture profile was taken to be in equilibrium with the initial ground water level.

Figure 7.6 presents input values of the precipitation and potential transpiration rates.
Calculated cumulative transpiration and cumulative drainage amounts as obtained with the
SWMS 2D and SWATRE codes are shown in Figure 7.7. The pressure head at the soil
surface and the arithmetic mean pressure head of the root zone during the simulated season
are presented in Figure 7.8. Finally, Figure 7.9 shows variations in the calculated

groundwater level with time.



K (cm/day)

05 . : :

g(cm®cm?)

4 -102 ;|o°
h (cm)

Fig. 7.5. Unsaturated hydraulic properties of the first and second soil layers for example 2.
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Fig. 7.6. Precipitation and potential transpiration rates for example 2.

66



Transpiration (cm)

Discharge (cm)

6
o

25 |-
OL' 1 |
ol 182 273
Time, t (days)
2 1 .

— )
= .
OZ 1 1

182 273

ol

Time, t (days)

Fig. 7.7. Cumulative values for the actual transpiration and bottom discharge rates for example
2 as simulated with SWMS 2D (solid line) and SWATRE (triangles).
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Fig. 7.9. Location of the groundwater table versus time for example 2 as simulated with the
SWMS 2D (solid line) and SWATRE (open circles) computer programs.

7.3. Example 3 - Two-Dimensional Solute Transport

This example was used to verify the mathematical accuracy of the solute transport
part of SWMS 2D. Cleary and Ungs [1978] published several analytical solutions for two-
dimensional dispersion problems. One of these solutions holds for solute transport in a
homogeneous, isotropic porous medium during steady-state unidirectional groundwater flow.
The solute transport equation (3.4) for this situation reduces to

2 2
p, 2% .p, 9 _,9¢ _\Rc-RES (1.1)
dx? 9z* oz at
where A is a first-order degradation constant, D, and Dy are the longitudinal and transverse

dispersion coefficients, respectively; v is the average pore water velocity (g,/0) in the flow

direction, and z and x are the spatial coordinates parallel and perpendicular to the direction
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of flow. The initially solute-free medium is subjected to a solute source, ¢, of unit
concentration. The source covers a length 2a along the inlet boundary at z=0, and is
located symmetrically about the coordinate x=0. The transport region of interest is the half-

plane (z20; <w<x<w). The boundary conditions may be written as:

c(x,0,¢t) =c, -a<x<a
c(x,0,¢)=0 other values of x

im2€ =0

o OZ

1im9C =0
20 OX

(7.2)

The analytical solution of the above transport problem is [see also Javandel et al., 1984]

t/R

CoZ vz v? z?
c(x,z,t) = g e -(AR - 372
®20) = D,y o 2DL)I expl-(AR 50T = 371"

(7.3)

a-—-x a+x
[e’f(w) e’f(m)]df

The input transport parameters for two simulations are listed in Table 7.1. The width of
the source was assumed to be 100 m. Because of symmetry, calculations were carried out

only for the quarter plane where x>0 and z20.

Table 7.1. Input parameters for example 3.

Parameter Example 3a Example 3b
v [m/day] 01 1.0
D; [m?/day] 1.0 0.5
D, [m?/day] 1.0 1.0
A [day!] 0.0 0.01
R [] 1.0 3.0
¢ [ 1.0 1.0
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Figure 7.10 shows the calculated concentration front (taken at a concentration of 0.1)
at selected times for the first set of transport parameters in Table 7.1. Note the close
agreement between the analytical and numerical results. Excellent agreement is also
obtained for the calculated concentration distributions after 365 days at the end of the
simulation (Fig. 7.11). Figures 7.12 and 7.13 show similar results for the second set of

transport parameters listed in Table 7.1.
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Fig. 7.10. Advancement of the concentration front (c=0.1) for
example 3a as calculated with SWMS 2D (dotted lines) and the
analytical solution (solid lines).
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Fig. 7.11. Concentration profile at the end of the simulation (=365
days) for example 3a as calculated with SWMS_2D (dotted lines) and
the analytical solution (solid lines).
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Fig. 7.12. Advancement of the concentration front (¢=0.1) for
example 3b as calculated with SWMS_2D (dotted lines) and the
analytical solution (solid lines) .
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Fig. 7.13. Concentration profile at the end of the simulation (r=365
days) for example 3b as calculated with SWMS_2D (dotted lines) and
the analytical solution (solid lines).

7.4. Example 4 - Water and Solute Infiltration Test

The SWMS_2D code was used to numerically simulate the movement of water and
a dissolved solute from a single-ring infiltrometer into the upper part of the soil profile of
example 2. The axisymmetric flow system and associated finite element mesh for the
ponded infiltration experiment are shown in Figure 7.14. The example was used to illustrate
variably-saturated water flow and solute transport in a layered and radially symmetric three-
dimensional soil profile.

Calculations were carried out over a period of 5 days. The pressure head profile
obtained in example problem 2 at the beginning of June 1982 was taken as the initial
condition for the flow equation. The soil profile was assumed to be initially free of any
solute. All sides of the flow region were considered to be impervious, except for a small

portion around the origin at the surface (the ponded surface inside the ring infiltrometer)
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Fig. 7.14. Flow system and finite element mesh for example 4.
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where constant pressure head and concentration boundary conditions were imposed. No
root water extraction was considered.

Table 7.2 lists the unsaturated soil hydraulic and solute transport parameters for the
two soil layers. Figures 7.15 and 7.16 presents calculated pressure head and concentration
profiles, respectively, at two different times. Notice the relatively strong interaction between
the infiltrating water and the saturated zone after 5 days (Fig. 7.15). The concentration
front, on the other hand, did not quite reach the groundwater table during the simulation

(Fig. 7.16).

Table 7.2. Input parameters for example 4.

Parameter 1st layer 2nd layer

Hydraulic Parameters

6,=0,=6, 0.399 0.339
6,=10, 0.0001 0.0001
K,=K, [m/day} 0.298 0.454
a [1/m] 1.74 1.39

n [ 1.3757 1.6024

Transport Parameterst

p [kg/m’] 1400

D, [m?/day] 0.00374

D, [m] 0.005

Dy [m] 0.001

k [m®/kg] 0.0001

u, [1/day] -0.05

B, [1/day] -0.01

¢ [ 10

t+Assumed to be the same for both soil layers
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Fig. 7.15. Calculated pressure head profiles at 7=.25 (top) and
5 days (bottom) for example 4.
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Fig. 7.16. Concentration profiles at #=.25 (top) and 5 days (bottom) for example 4.
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8. INPUT DATA

The input data for SWMS 2D are given in three separate input files. These input
files consist of one or more input blocks identified by the letters from A through K. The

input files and blocks must be arranged as follows:

SELECTOR.IN

Basic Information

Material Information

Time Information

Root Water Uptake Information
Seepage Information

Drainage Information

Solute Transport Information

QmmuOwp

GRID.IN
H. Nodal Information
I. Element Information
J. Boundary Geometry Information

ATMOSPH.IN
K. Atmospheric Information

The various input blocks are described in detail in Section 8.1, while Section 8.2 lists
the actual input files for examples 1 through 4 discussed in Section 7. The output files for

these examples are discussed in Section 9.
8.1. Description of Data Input Blocks

Tables 8.1 through 8.11 describe the data required for each input block. All data are
read in using list-directed formatting (free format). Comment lines are provided at the
‘beginning of, and within, each input block to facilitate, among other things, proper
identification of the function of the block and the input variables. The comment lines are
ignored during program execution; hence, they may be left blank but should not be omitted.
All input files must be placed in the directory SWMS 2D.IN. The program assumes that

all input data are specified in a consistent set of units for mass M, length L, and time T.
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Most of the information in Tables 8.1 through 8.11 should be self-explanatory. Table
8.8 (Block H) is used to define, among other things, the nodal coordinates and initial
conditions for the pressure head and the concentration. One short-cut may be used when
generating the nodal coordinates. The short-cut is possible when two nodes (e.g., N; and
N,), not adjacent to each other, are located along a transverse line such that N, is greater
than N,+1. The program will automatically generate nodes between N, and N,, provided
all of the following conditions are met simultaneously: (1) all nodes along the transverse line
between nodes N, and N, are spaced at equal intervals, (2) values of the input variables
hNew(n), Beta(n), Axz(n), Bxz(n), Dxz(n), and Conc(n) vary linearly between nodes N, and
N,, and (3) values of Kode(n), Q(n) and MatNum(n) are the same for all n = N;, N;+1,..,,
N,-1 (see Table 8.8).

A similar short-cut is possible when generating the elements in Block I (Table 8.9).
Consider two elements, E, and E,, between two transverse lines such that E, is greater than
E,. The program requires input data only for element E, (ie., data for elements E;+1
through E, may be omitted), provided the following two conditions are met simultaneously:
(1) all elements between E, and E, are quadrilaterals, including E, and E,, and (2) all
elements, E,,...., E,, are assigned the same values of Angle(e), ConAl(e), ConA2(e), and
LayNum(e) as defined in Table 8.9.
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Table 8.1. Block A - Basic information.

~
:
3

Variable

Description

=
(8]

NN b b A W

10
1

11
11

1

11

Char

Char
Char
Char

Integer

Integer
Real

Real

Logical

Logical
Logical

Logical

Logical

Hed

LUnit

TUnit

MUnit

Kat

Maxlt
TolTh

TolH

Wat

IChem
CheckF

ShortF

FluxF

Comment lines.

Heading.

Comment line.

Length unit (e.g., ‘cm’).

Time unit (e.g., ‘min’).

Mass unit for concentration (e.g., ’g’, ‘'mol’, ’-’).
Comment line.

Type of flow system to be analyzed:
0 for a horizontal (areal) system
1 for axisymmetric flow
2 for vertical flow in a cross-section

Comment line.
Maximum number of iterations allowed during any time step (usually 20).

Absolute water content tolerance for nodes in the unsaturated part of the flow
region [-] (its recommended value is 0.0001). TolTh represents the maximum
desired absolute change in the value of the water content, 6, between two
successive iterations during a particular time step.

Absolute pressure head tolerance for nodes in the saturated part of the flow
region [L] (its recommended value is 0.1 cm). TolH represents the maximum
desired absolute change in the value of the pressure head, h, between two
successive iterations during a particular time step.

Comment line.

Set this logical variable equal to .true. when transient water flow is considered.
Set this logical variable equal to false. when steady-state water flow is to be
calculated.

Set this logical variable equal to .true. if solute transport is to be considered.

Set this logical variable equal to .true. if the grid input data are to be printed
for checking.

true. if information is to be printed only at preselected times, but not at each
time step (T-level information, see Section 9.1),
false. if information is to be printed at each time step.

Arue. if detailed information about the element fluxes and discharge/recharge
rates is to be printed.
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Table 8.1. (continued)

Record Type Variable  Description
11 Logical Atminf true. if atmospheric boundary conditions are supplied via the input file
ATMOSPHL.IN,
Jalse. if the file ATMOSPH.IN is not provided (ie., in case of time
independent boundary conditions).
1 Logical SeepF true. if one or more seepage faces is to be considered.
1 Logical FreeD Set this logical variable equal to .true. if a unit vertical hydraulic gradient
boundary condition (free drainage) is used at the bottom boundary.
Otherwise set equal to .false. .
11 Logical DrainF Set this logical variable equal to .true. if a drain is to be simulated by means

of boundary condition. Otherwise set equal to .false. . Section 4.3.7 explains
how tile drains can be represented as boundary conditions in a regular finite
element mesh.
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Table 8.2. Block B - Material information.

Record Type Variable  Description

12 - - Comment lines.

3 Integer NMat Number of soil materials. Materials are identified by the material number,
MatNum, specified in Block H.

3 Integer NLay Number of subregions for which separate water balances are being computed.
Subregions are identified by the subregion number, LayNum, specified in
Block 1.

3 Real ha Absolute value of the upper limit [L] of the pressure head interval below
which a table of hydraulic properties will be generated internally for each
material (b, must be greater than 0.0; e.g. 0.001 cm) (sce Section 4.3.11).

3 Real hb Absolute value of the lower limit [L] of the pressure head interval for which
a table of hydraulic properties will be generated internally for each material
(e.g. 1000 m). One may assign to h, the highest (absolute) expected pressure
head to be expected during a simulation. If the absolute value of the pressure
head during program execution lies outside of the interval [A, ,h,], then
appropriate values for the hydraulic properties are computed directly from the
hydraulic functions (i.e., without interpolation in the table).

3 Integer NPar Number of parameters specified for each material (ie., 9 in case of the
modified van Genuchten model). If the original van Genuchten model is to
be used, then set 6,=46,, 8,=0,=0, and K, =K, (see Section 2.3 for the
description of unsaturated soil hydraulic properties).

4 - - Comment line.

5 Real Par(1,M)  Parameter ¢, for material M [-].

5 Real Par(,M)  Parameter 6, for material M [-}.

5 Real Par(3M)  Parameter 4, for material M [-].

5 Real Par(4M)  Parameter §,, for material M [-].

5 Real Par(5M)  Parameter a for material M [L"].

5 Real Par(6,M)  Parameter n for material M [-].

5 Real Par(1M)  Parameter K, for material M [LT"].

5 Real Par(8M)  Parameter K, for material M [LT"].

5 Real Par(9M)  Parameter , for material M [-].

Record 5 information is provided for each material M (from 1 to NMat).
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Table 8.3. Block C - Time information.

Record Type Variable Description

1,2 - - Comment lines.

3 Real dt Initial time increment, Af [T]. Initial time step should be estimated in
dependence on the problem solved. For problems with high pressure
gradients (e.g. infiltration into an initially dry soil), Af should be relatively
small.

3 Real dtMin Minimum permitted time increment, Af,,, [T].

Real dtMax Maximum permitted time increment, At [T].

3 Real dMul If the number of required iterations at a particular time step is less than or
equal to 3, then At for the next time step is multiplied by a dimensionless
number dMul > 1.0 (its value is recommended not to exceed 1.3).

3 Real dMul2 If the number of required iterations at a particular time step is greater than
or equal to 7, then Af for the next time step is multiplied by dMul2 < 1.0
(e.g. 0.33).

3 Integer MPL Number of specified print-times at which detailed information about the
pressure head, water content, concentration, flux, and the soil water and
solute balances will be printed.

- - Comment line.

5 Real TPrint(1) First specified print-time [T].

5 Real TPrint(2) Second specified print-time [T].

5 Real TPrint(MPL) Last specified print-time [T].
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Table 8.4.

Block D - Root water uptake information.

Record Type Variable

Description

3 Real PO
3 Real P2H
3 Real P2L
3 Real P3

Real r2H
Real r2L

5 Real POptm(1)

5 Real POptm(2)

Comment lines.

Value of the pressure head, h, (Fig. 2.1), below which roots start to extract
water from the soil.

Value of the limiting pressure head, h;, below which the roots cannot
extract water at the maximum rate (assuming a potential transpiration rate

of r2H).

As above, but for a potential transpiration rate of r2L.

Value of the pressure head, h,, below which root water uptake ceases
(usually equal to the wilting point).

Potential transpiration rate [LT"] (currently set at 0.5 cm/day).
Potential transpiration rate [LT"] (currently set at 0.1 cm/day).

The above input parameters permit one to make the variable 4, a function
of the potential transpiration rate, 7, (h; presumably decreases at higher
transpiration rates). SWMS 2D currently implements the same linear
interpolation scheme as used in several versions of the SWATRE code (e.g.,
Wesseling and Brandyk, 1985). The scheme is based on the following
interpolation:

P2L -P2H
r2H -r2L

h,=P2L for T,=r2L
h,=P2H  for T,z r2H

h, =P2H + (r2H-T) for 2L < T, <r2H

Comment line.

Value of the pressure head, h,, below which roots start to extract water at
the maximum possible rate (material number 1).

As above (material number 2).

5 Real POptm(NMat) As above (for material number NMar).

* Block D is not read in if the logical variable SinkF (Block K) is set equal to .false. .
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Table 8.5. Block E - Seepage face information.

Record Type Variable Description

1,2 - - Comment lines.

3 Integer NSeep Number of seepage faces expected to develop.

4 - - Comment line.

5 Integer NSP(1) Number of nodes on the first seepage face.

5 Integer NSP(2) Number of nodes on the second seepage face.

5 Integer NSP(NSeep) Number of nodes on the last seepage face.

6 - - Comment line.

7 Integer NP(1,1) Sequential global number of the first node on the first seepage face.
7 Integer NP(1,2) Sequential global number of the second node on the first seepage face.
7 Integer NP(1,NSP(1)) Sequential global number of the last node on the first seepage face.

Record 7 information is provided for each scepage face.

t Block E is not read in if the logical variable SeepF (Block A) is set equal to .false. .
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Table 8.6. Block F - Drainage information.t

Record Type Variable Description

1,2 - - Comment lines.

3 Integer NDr Number of drains. See Section 4.3.7 for a discussion on how tile drains
can be represented as boundary conditions in a regular finite element
mesh.

3 Real DrCorr Additional reduction in the correction factor C, (See Section 4.3.7).

4 - - Comment line.

5 Integer ND(1) Global number of the first drain.

5 Integer ND(2) Global number of the second drain.

5 Integer ND(NDr) Global number of the last drain.

6 - - Comment line.

7 Integer NEID(1) Number of elements surrounding the first drain.

7 Integer NEID(2) Number of elements surrounding the second drain.

7 Integer NEID(NDr)  Number of elements surrounding the last drain.

8 - - Comment line.

9 Real EfDim(1,1) Effective diameter of the first drain (see Section 4.3.7).

9 Real EfDim(2,1) Dimension of the square in finite element mesh representing the first
drain (see Section 4.3.7).

Record 9 information is provided for each drain.

10 - - Comment line.

11 Integer KEIDr(1,1) Global number of the first element surrounding the first drain.

1 Integer KEIDr(1,2) Global number of the second element surrounding the first drain.

11 Integer KEIDr(1,NEID(1)) Global number of the last element surrounding the first drain.

Record 11 information is provided for each drain.

t Block F is not read in if the logical variable DrainF (Block A) is set equal to false. .
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Table 8.7. Block G - Solute transport information.!

Record Type Variable Description

1,2 - - Comment lines.

3 Real Epsi Temporal weighing cocfficient.

=0.0 for an explicit scheme.
=0.5 for a Crank-Nicholson implicit scheme.
=1.0 for a fully implicit scheme.

3 Logical (UpW Arue. if upstream weighing formulation is to be used.
false. if the original Galerkin formulation is to be used.

3 Logical IlAntD true. if artificial dispersion is to be added in order to fulfill the stability
criterion PeCr (see Section 5.3.6).
false. otherwise.

3 Real PeCr Stability criterion (see Section 53.6). Set equal to zero when [UpW is
equal to .true..

4 - - Comment line.

5 Real ChPar(1L,M)  Bulk density of material M, p [ML"].

5 Real ChPar(2M)  Tonic or molecular diffusion coefficient in free water, D, [LTY].

5 Real ChPar(3,M) Longitudinal dispersivity for material type M, D, [L].

5 Real ChPar(4M)  Transverse dispersivity for material type M, Dy [L].

5 Real ChPar(5,M) Freundlich isotherm coefficient for material type M, k [M'L?].

5 Real ChPar(6,M) First-order rate constant for dissolved phase, material type M, p,, [T

5 Real ChPar(1,M) First-order rate constant for solid phase, material type M, p, [T"].

5 Real ChPar(8 M)  Zero-order rate constant for dissolved phase, material type M, v, [ML3T’].

5 Real ChPar(9,M) Zero-order rate constant for solid phase, material type M, -, [T
Record 5 information is provided for each material M (from 1 to NMat).

6 - - Comment line.

7 Integer KodCB(1) Code specifying the type of boundary condition for solute transport applied
to a particular node. Positive and negative signs indicate that first-, or
second- or third- (depending upon the calculated water flux Q) type
boundary condition are implemented, respectively. In case of time-
independent boundary conditions (Kode(1) = +1,£2, or +6 - See Block H),
KodCB(1) also refers to the field cBound for the value of the solute
transport boundary condition. The value of cBound(abs(KodCB(1)))
specifies the boundary condition for node KXB(1) (the first of a set of
sequentially numbered boundary nodes for which Kode(N) is not equal to
zero). Permissible values are +1,%2,...,+5,%6.

7 Integer KodCB(2) Same as above for the second boundary node.

7 Integer KodCB(NumBP)  Same as above for the last boundary node.

8 - - Comment line.
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Table 8.7. (continued)

Record Type

Variable

Description

10
11

Real

Real

Real

Real

Real

cBound(1)

cBound(2)

c.Bound(S)

cBound(6)

tPulse

Value of the concentration for the first time-independent BC [ML®]. Set
equal to zero if no KodCB(n)= *1 is specified.

Value of the concentration for the second time-independent BC [ML?].
Set equal to zero if no KodCB(n)= +2 is specified.

Value of the concentration for the fifth time-independent BC [ML?]. If
water uptake is specified then cBound(5) is automatically used for the
concentration of water removed from the flow region by root water uptake
[ML?]. Set equal to zero if no KodCB(n)= %5 and no root solute uptake
is specified.

Value of the concentration for the sixth time-independent BC [ML?]. If
internal sources are specified then cBound(6) is automatically used for the
concentration of water injected into the flow region through internal
sources [ML?]. Set equal to zero if no KodCB(n)=+6 and no internal
sources are specified.

Comment line.

Time duration of the concentration pulse [T].

Block G is not needed when the logical variable /Chem in Block A is set equal to .false..
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Table 8.8. Block H - Nodal information.

Record Type Variable = Description

1,2 - - Comment lines.

3 Integer NumNP Number of nodal points.

3 Integer NumEl Number of elements (quadrilaterals and/or triangles).

3 Integer IJ Maximum number of nodes on any transverse line.

3 Integer NumBP Number of boundary nodes for which Kode(N) is not equal to 0.

3 Integer NObs Number of observation nodes for which values of the pressure head, water
content, and concentration (for /Chem = true.) are printed at each time level.

4 - - Comment line.

Integer n Nodal number.

5 Integer  Kode(n) Code specifying the type of boundary condition applied to a particular node.
Permissible values are 0,+1,+2,+3,+4,...* NumKD (see Section 6.3).

5 Real x(n) x-coordinate of node n [L] (always a horizontal coordinate).

5 Real z(n) z-coordinate of node n [L]. z is the vertical coordinate for problems involving
vertical planar or axisymmetric flow. For axisymmetric flow, z coincides with
the vertical axis of symmetry.

5 Real hNew(n) Initial value of the pressure head at node n [L]. If IWat = false. in Block A,
then hNew(n) represents the initial guess of the pressure head for steady state
conditions.

5 Real Conc(n) Initial value of the concentration at node n [ML?] (set = 0 if /Chem = false.)

5 Real Q(n) Prescribed recharge/discharge rate at node n; [L’T"] for planar flow, [L*T"] for
axisymmetric flow. Q(n) is negative when directed out of the system. When no
value for Q(n) is needed, set Q(n) equal to zero.

5 Integer  MatNum(n) Index for material whose hydraulic and transport properties are assigned to
node n.

5 Real Beta(n) Value of the water uptake distribution, b(x,2), in the soil root zone at node n.
Set Beta(n) equal to zero if node n lies outside the root zone.

5 Real Axz(n) Nodal value of the dimensionless scaling factor a, associated with the pressure
head.

5 Real Bxz(n) Nodal value of the scaling factor oy associated with the saturated hydraulic
conductivity.

5 Real Dxz(n) Nodal value of the scaling factor a, associated with the water content.

In general, record 5 information is required for each node n, starting with n=1
and continuing sequentially until n = NumNP. Record 5 information for certain
nodes may be skipped if several conditions are satisfied (see beginning of this

section)
7
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Table 8.9. Block I - Element information.

Record

Type Variable

Description

W W W W W =

Integer e

Integer KX(e,1)
Integer KX(e,2)
Integer KX(e,3)
Integer KX(e,4)

Real Angle(e)

Real ConAl(e)

Real ConAd2(e)
Integer LayNum(e)

Comment lines.

Element number.

Global nodal number of corner node i.
Global nodal number of corner node j.
Global nodal number of corner node k.

Global nodal number of corner node /. Indices i j, k, and J, refer to the
corner nodes of an element e taken in a counter-clockwise direction. For
triangular elements KX(e,4) must be equal to KX(e,3).

Angle in degrees between K,* and the x-coordinate axis assigned to each
element e.

First principal component, K, of the dimensionless tensor K* which describes
the local anisotropy of the hydraulic conductivity assigned to element e.

Second principal component, K;*.
Subregion number assigned to element e.

In general, record 3 information is required for each element e, starting with
e=1 and continuing sequentially until e=NumEl. Record 3 information for
certain elements may be skipped if several conditions are satisfied (see
beginning of this section).

91



Table 8.10. Block J - Boundary geometry information.

Record

Type Variable

Description

1,2
3

Integer KXB(1)

Integer KXB(2)
Integer KXB(NumBP)

Real  Width(1)

Real  Width(2)

Comment lines.

Global node number of the first of a set of sequentially numbered boundary
nodes for which Kode(n) is not equal to zero.

As above for the second boundary node.

As above for the last boundary node.
Comment line.

Width of the boundary [L] associated with boundary mode KXB(1).
Width(n) includes half the boundary length of each element connected to
node KXB(n) along the boundary. The type of boundary condition assigned
to KXB(n) is determined by the value of Kode(n). For axisymmetric flow,
Width(n) represents the area of the boundary strip [L?] associated with node
KXB(n); this area should be calculated along a horizontal boundary as

Width(j) = ';: [(xj-l +2'xj) (xj _xj-l) + (xjol +2xj) (xjd -xj)]

If a unit vertical hydraulic gradient or a deep drainage boundary condition
is specified at node n, then Width(n) represents only the horizontal
component of the boundary.

As above for node KXB(2).

Real  Width(NumBP) As above for node KXB(NumBP).

Real rlLen

Integer Node(1)

Integer Node(2)

Integer Node(NObs)

Comment line.

Width of soil surface associated with transpiration [L]; represents surface
area [L? in case of axisymmetrical flow. Set rLen equal to zero for
problems without transpiration.

Comment line.

Global node number of the first observation node for which values of the
pressure head, water content, and concentration (for IChem = true.) are
printed at each time level.

Same as above for the second observation node.

Same as above for the last observation node.
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Table 8.11. Block K - Atmospheric information.

Record Type Variable Description

1,234 - - Comment lines.

5 Logical SinkF Set this variable equal to .true. if water extraction from the root zone is
imposed.

5 Logical gGWLF Set this variable equal to .true. if the discharge-groundwater level relationship
q(GWL) given by equation (6.1) is used as the bottom boundary condition;
GWL =h-GWLOL, where h is the pressure head at the boundary.

6 - - Comment line.

Real GWLOL Reference position of groundwater table (usually the z-coordinate of the soil

surface).

7 Real Agh Value of the parameter A, in the g(GWL)-relationship (equation (6.1)); set
to zero if gGWLF = false.

7 Real Bgh Value of the parameter B, in the g(GWL)-relationship (equation (6.1)); set
to zero if gGWLF = false.

8 - - Comment line.

Real thnit Starting time [T} of the simulation.

9 Integer MaxAl Number of atmospheric data records.

10 - - Comment line.

11 Real hCrtS Maximum allowed pressure head at the soil surface [L].

12 - - Comment line.

13 Real tdim(i) Time for which the i-th data record is provided [T].

13 Real  Prec(i) Precipitation [LT"] (in absolute value).

13 Real cPrec(i) Solute concentration of rainfall water [ML?] (set = 0 if /Chem = false.).

13 Real rSoil(i) Potential evaporation rate [LT"] (in absolute value).

13 Real  rRoot(i) Potential transpiration rate [LT"] (in absolute value).

13 Real  hCritA(i) Absolute value of the minimum allowed pressure head at the soil surface [L].

13 Real rGWL() Drainage flux [LT"] across the bottom boundary, or other time-dependent
prescribed flux boundary condition (positive when water leaves the flow
region), for nodes where Kode(n)=-3; set to zero when no Kode(n)=-3
boundary condition is specified.

13 Real GWL(i) Groundwater level [L] (usually negative), or other time-dependent prescribed

head boundary condition, for nodes where Kode(n)= +3; set equal to zero
when no Kode(n) = +3 is specified. The prescribed value of the pressure head

1s h=GWL+GWLOL.
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Table 8.11. (continued)

Record Type Variable Description

13 Real cn(i) Time-dependent concentration of the drainage flux [ML?], or some other
time-dependent prescribed flux, for nodes where Kode(n)=+3 and
KodCB(n) <0 (this variable does not need to be specified if /Chem = false.; set
equal to zero when no Kode(n)=+3 and KodCB(n)<0, or when the flux
rGWL(i) is directed out of the flow domain).

13 Real  cht(i) Time-dependent concentration {ML